
©2013	Enkitec	

Drill	down	into	the	log	writer	
inner	working	and	

communica9on	to	foreground	
processes.
Frits	Hoogland	

1

This is the font size used for showing screen output. Be sure this is readable for you.

This is the font used to accentuate text/console output. Make sure this is readable for you too!

$(whoami)

• Frits	Hoogland	
• Working	with	Oracle	products	since	1996	

• Blog:	hFp://fritshoogland.wordpress.com	
• TwiFer:	@fritshoogland	
• Email:	frits.hoogland@enkitec.com	
• Oracle	ACE	Director	
• OakTable	Member

2

Author,	together	with	Mar9n	Bach,	
Karl	Arao	and	Andy	Colvin.

3

Books

Technical	reviewer:

What	is	this	presenta9on	about?

SQL>	commit;	

4

What happens between the foreground and the
LGWR on commit in polling mode?

Specifically: how do these communicate.Commit	complete.

What	is	this	presenta9on	about?

It’s	not	not	the	des9na9on	but	the	journey	that	maFers.	

Summary	of	the		poem	“Ithaca”	by	Constan9ne	Cavafy.

5

Warning

• Looking	at	the	inner	working	of	Oracle.	
– A	lot	of	this	is	undocumented.	
– This	means	looking	at	(in)	the	Oracle	executable	and	
o/s	resources.	

• The	techniques	used	are	no	methods	for	daily	
administra9on	tasks.	
– Rather	techniques	to	be	used	in	specialis3c	edge	
cases.	

• Using	these	techniques	wrong	can	have	severe	
consequences	(instance	down,	corrup6on)!

6

Prerequisites

• Basic	understanding	of	how	the	processes	of	an	
Oracle	database	work	and	communicate.	

• Basic	understanding	of	C	coding	and	basic	flow	
of	execu9on.	

• Understanding	of	the	logic	of	redo	and	redo	
concepts	for	the	foreground	and	log	writer	
processes.	

• This	is	not	a	high	level	overview.	This	is	a	
microscopic	look	into	the	inner	working.

7

Final scare away warning!

Test	system

• The	tests	and	inves9ga9on	is	done	in	a	VM:	
– Host:	Mac	OSX	10.11.3	/	VMWare	Fusion	7.1.3.	
– VM:	Oracle	Linux	x86_64	7u2	(3.10.0-123.el7.x86_64).	
– Oracle	database	12.1.0.2.	

• The	tests	in	this	presenta9on	are	done	with	the	
default	semngs	for:	
– COMMIT_LOGGING	(immediate),	COMMIT_WAIT	
(wait)	and	COMMIT_WRITE*.	

8

Recap

• Following	is	a	summary	from	my	‘profiling	the	
logwriter	and	database	writer’	presenta9on.	

• There	are	two	methods	for	a	foreground	process	
to	understand	its	redo	has	been	wriFen:	
– Post/wait	
– Polling

9

Logwriter,	commit	-	post-wait

10

time

foreground

logwriter
semtimedop(458755, {{15, -1, 0}}, 1, {3, 0})

semctl(458755, 15, SETVAL, 0x7fff00000001)

commit;

io_submit(139981752844288, 1,
{{0x7f5008e23480, 0, 1, 0, 256}})

io_getevents(139981752844288, 1, 128,
{{0x7f5008e23480, 0x7f5008e23480, 3584, 0}},

{600, 0})

log file parallel writerdbms ipc message

kcrf_commit_force()

kcscur3()

semtimedop(458755, {{33, -1, 0}}, 1, {0, 100000000})

log file sync Grayed means: optional

>=12.1.0.1: kcrf_commit_force_int()

©2013	Enkitec	
11

©2013	Enkitec	
12

©2013	Enkitec	
13

©2013	Enkitec	
14

©2013	Enkitec	
15

Logwriter,	commit	-	polling

16

time

foreground

logwriter
semtimedop(458755, {{15, -1, 0}}, 1, {3, 0})

semctl(458755, 15, SETVAL, 0x7fff00000001)

commit;

io_submit(139981752844288, 1,
{{0x7f5008e23480, 0, 1, 0, 256}})

io_getevents(139981752844288, 1, 128,
{{0x7f5008e23480, 0x7f5008e23480, 3584, 0}},

{600, 0})

log file parallel writerdbms ipc message

kcrf_commit_force

kcscur3

log file sync

nanosleep({0, 9409000}, 0x7fff64725480)

nanosecs; varies

>=12.1.0.1: kcrf_commit_force_int()

©2013	Enkitec	
17

©2013	Enkitec	
18

©2013	Enkitec	
19

©2013	Enkitec	
20

Logwriter	polling	mode

• There	does	not	seem	to	be	any	no9fica9on	from	
the	LGWR	to	the	foreground	process.	
– Which	must	mean	‘polling’	means	the	foreground	
process	polls	something	to	see	if	its	log	buffer	contents	
are	wriFen.

21

Logwriter	polling	mode

• previously,	I	discovered	some	func9ons*	being	
called	in	the	foreground	process	ater	semctl():	
– kcrf_commit_force()	/	kcrf_commit_force_int()	as	the	
main	rou9ne	in	responsible	for	making	sure	the	redo	
contents	are	wriFen	by	the	LGWR.	

– nanosleep()	as	a	way	of	suspending	execu9on	for	a	
FIXED	period	of	9me.	

– kcscur3()	as	a	func9on	that	does	“something”,	
probably	scanning	the	commit	SCN?	
– Also	used	p/w,	edge	case	consistent	w/assump9on.

22

Logwriter	polling	mode

• Based	on	the	observed	paFern:	
– semctl	(to	signal	the	LGWR)	
– kcrf_commit_force_int	(main	check	loop)	
– kcscur3	(supposed	LGWR	progress	checking)	
– nanosleep	(spend	a	calculated	9me	off	CPU)	

• I	assumed	that	kcscur3	is	checking	the	commit	
SCN.	

• Jonathan	Lewis	theorised	that	all	the	FG	needed	
to	do	was	keep	track	of	the	write	status	of	its	
blocks	in	the	public	redo	buffer.

23

• So	the	ques9on	is:		

How	does	a	FG	process	in	polling	mode	
determine	that	its	public	log	buffer	contents	are	
wriFen	to	disk?

24

• What	informa9on	do	we	have?	

• kcscur3()			
• …nothing	else

25

• We	don’t	have	source	code	nor	debug	
informa9on	from	the	Oracle	executable.	

• We	can	fetch	the	func9on	arguments:	
• Linux	X86_64	follows	the	AMD64	ABI	
• Which	means	func9on	arguments	are	passed	
via	CPU	registers:	
• RDI,	RSI,	RDX,	RCX,	R8,	R9	

• We	do	not	know	the	number	of	arguments.

26

kcscur3

• Let’s	profile	the	foreground	session,	and	print	
the	arguments	of	kcscur3	func9on.

27

©2013	Enkitec	
28

kcscur3

• This	shows	an	oddity:	
– The	foreground	immediately	con9nues.	

• Nanosleep	doesn’t	get	called.	
• This	means	the	‘log	file	sync’	wait	is	omiFed	too!	

• Let’s	slow	down	the	LGWR!	
– In	order	to	do	that,	I’ll	add	a	sleep	of	10ms	to	the	IO	
reap	(=io_getevents	call)	of	the	log	writer	process.

29

©2013	Enkitec	
30

kcscur3

• Par9al	output	of	breaks,	on	commit:	
Breakpoint 4, 0x00007ffc796a1a40 in semctl () from /lib64/libc.so.6

Breakpoint 2, 0x000000000cc5edd0 in kcrf_commit_force_int ()

kcscur3 60027c98, 7bfe4430, 1, 634

kcscur3 60027c68, 7bfe4398, 0, 0

Breakpoint 1, 0x00007ffc79b8f940 in nanosleep () from /lib64/libpthread.so.0

kcscur3 60027c98, 7bfe4430, 1, 94c7f210

kcscur3 60027c68, 7bfe4398, 0, 0

Breakpoint 1, 0x00007ffc79b8f940 in nanosleep () from /lib64/libpthread.so.0

kcscur3 60027c98, 7bfe4430, 1, 94c7f210

kcscur3 6001fbb0, 7bfe4988, 1, 7d950090

31

There are 3 addresses as the first argument to kcscur3():
0x60027c98, 0x60027c68 and 0x6001fbb0.

kcscur3

• What	are	these	addresses?	

• Let’s	see	if	these	are	shared	memory	addresses:	

32

kcscur3

• The	shared	memory	area’s	of	an	Oracle	database	
are	placed	in	a	couple	of	shared	memory	
segments.		

• These	shared	memory	segments	addresses	can	
be	dumped	with:	
• oradebug	ipc	

33

©2013	Enkitec	
34

kcscur3
Handle: 0x117fdea0 `/u01/app/oracle/product/12.1.0.2/dbhome_1fv12102'

 Dump of unix-generic realm handle `/u01/app/oracle/product/12.1.0.2/
dbhome_1fv12102', flags = 00000000

 key 3512777704 actual_key 3512777704 num_areas 4 num_subareas 4

 primary shmid: 753667 primary sanum 3 version 3

 deferred alloc: FALSE (0) def_post_create: FALSE (0) exp_memlock: 1002M

 Area #0 `Fixed Size' containing Subareas 2-2

 Total size 00000000002cbe70 Minimum Subarea size 00000000

 Area Subarea Shmid Segment Addr Stable Addr Actual Addr

 0 2 655360 0x00000060000000 0x00000060000000 0x00000060000000

 Subarea size Segment size Req_Protect Cur_protect

 00000000002cc000 00000000002cc000 default readwrite

 Area #1 `Variable Size' containing Subareas 0-0

 Total size 0000000036000000 Minimum Subarea size 00400000

 Area Subarea Shmid Segment Addr Stable Addr Actual Addr

 1 0 688129 0x00000060400000 0x00000060400000 0x00000060400000

 Subarea size Segment size Req_Protect Cur_protect

 0000000036000000 0000000036000000 default readwrite

35

Fixed	SGA

• The	fixed	SGA	variables	are	visible	in	x$ksmfsv	
– The	fixed	SGA	contains	more	than	SGA	variables,	like	
latches*.	

SQL> select ksmfsnam, ksmfsadr, ksmfssiz from x$ksmfsv

 2 where to_number(‘60027c98’,’XXXXXXXX’)

 3 between to_number(ksmfsadr,’XXXXXXXXXXXXXXXX’)

 4 and to_number(ksmfsadr,’XXXXXXXXXXXXXXXX’)+ksmfssiz-1;

KSMFSNAM KSMFSADR KSMFSSIZ
------------------------------ ---------------- --------
kcrfsg_ 0000000060027C30 1608
-- and 60027c68:
KSMFSNAM KSMFSADR KSMFSSIZ
------------------------------ ---------------- --------
kcrfsg_ 0000000060027C30 1608
-- and 6001fbb0:
KSMFSNAM KSMFSADR KSMFSSIZ
------------------------------ ---------------- --------
kcsgscn_ 000000006001FBB0 48

36

• The	two	addresses	0x60027c98	&	0x60027c68	
• Point	to	a	fixed	SGA	variable	called	‘kcrfsg’	

– This	variable	starts	at	0x60027c30	
– This	likely	is	a	c	‘struct’,	which	resembles	a	table.	

• And	the	address	0x6001{b0	
• Points	to	a	fixed	SGA	variable	called	‘kcsgscn’

37

• Okay,	one	step	at	a	9me…	

• What	else	can	we	see?	

• What	values	do	these	memory	loca9ons	contain?

38

©2013	Enkitec	
39

struct	kcrfsg	&	kcsgscn

• gdb	x	command:	examine,	/d=decimal	

(gdb) x/d 0x60027c98

0x60027c98: 537122

(gdb) x/d 0x60027c68

0x60027c68: 537124

(gdb) x/d 0x6001fbb0

0x6001fbb0: 537126

• What	are	these	numbers??	
SQL> select current_scn from v$database;

CURRENT_SCN

 537136

40

• That’s	too	close	to	be	a	coincidence!	
– It	looks	like	these	all	contain	SCNs!	
– Another	small	step	taken.

41

Fixed	SGA	variable	kcsgscn

• KCSGSCN	(alias	address	0x6001{b0)	
– KCS	-	probably	Kernel	Cache	Service	
– G	-	global?	group?	
– SCN	-	probably	SCN;	System	Change	Number	

• A	way	of	detec9ng	usage	of	kcsgscn	is	using	a	
watchpoint.

42

oradebug	watchpoint

43

©2013	Enkitec	
44

©2013	Enkitec	
45

select current_scn from v$database showed: 771067.

That’s in hex: 0xbc3fb

This is : 0xfbc30b —> should the ‘f’ be moved to the place of the ‘0’????

oradebug watchpoints are NOT documented and gives ‘wierd’ results…

gdb	watchpoint

46

©2013	Enkitec	
47

Fixed	SGA	variable	kcsgscn

• The	watchpoint	shows	current_scn	using	this	
variable	

• In	the	previous	gdb	watchpoint	we	saw	the	
func9on	kcsgbsn()	accessing	it.	
– kcsgbsn	=	kernel	cache	service	get	batched	SCN	

• kcsgscn	contains	the	current	SCN	for	the	
instance.

48

struct	kcrfsg

• Let’s	see	of	there	are	x$	views	that	resemble	the	struct	
name:	

SQL> select name from v$fixed_table where upper(name) like upper(‘%kcrf%’);

NAME

X$KCRFWS

X$KCRFSTRAND

X$KCRFDEBUG

X$KCRFX

49

struct	kcrfsg
SQL> select addr from x$kcrfx;

no rows selected

SQL> select addr from x$kcrfdebug;

ADDR

0000000060028828

SQL> select addr from x$kcrfstrand;

ADDR

00007F68F1F195C0

00007F68F1F195C0

SQL> select addr from x$kcrfws;

ADDR

0000000060027C38

50

Close, but past kcrfsg (0x60027c30) and 0x60027c98 and
0x60027c68.

These are PGA memory addresses (the high ones structurally
are). And this makes sense with X$KCRFSTRAND, which probably
has to do with private redo strands.

Bingo! 8 bytes past kcrfsg (0x60027c30) and before 0x60027c98
and 0x60027c68.

X$KCRFWS

• So	we	got	a	fixed	SGA	variable	called	kcrfsg_		
• Which	is	(quite	probably)	a	struct	called	kcrfsg	
• Which	is	externalised	by	X$KCRFWS	

• Is	X$KCRFWS	used	in	a	‘dynamic	performance	
view’,	alias	a	V$	view?

51

X$KCRFWS
SQL> select view_name from v$fixed_view_definition

 2 where lower(view_definition) like '%kcrfws%';

VIEW_NAME

GV$XSTREAM_CAPTURE

• Streams??	
– 	Xstream	is	the	next	genera9on	streams	used	by	OGG.	
– Actually,	it	makes	sense	that	streams/OGG	have	a	
strong	dependency	on	redo	write	details!

52

X$KCRFWS

• Streams??	
– Searching	the	internet	I	found	sites	men9oning	X
$KCRFWS	is	related	to	streams.	
– Yes,	a	view	related	to	streams	uses	it.	

– Don’t	trust	the	internet	un6l	you	have	verified!	

• X$KCRFWS	is	all	about	redo.	
– My	guess	is	X$KCRFWS	actually	means:	

– “Kernel	Cache	Redo	File	Write	Status”.

53

X$KCRFWS
 Name Null? Type
 --- -------- ----------------------------
 ADDR RAW(8)
 INDX NUMBER
 INST_ID NUMBER
 CON_ID NUMBER
 NEXT_BLK NUMBER
 LAST_BLK NUMBER
 ON_DISK_SCN_BAS NUMBER
 ON_DISK_SCN_WRP NUMBER
 ON_DISK_PING_SCN_BAS NUMBER
 ON_DISK_PING_SCN_WRP NUMBER
 LAST_WRITE_SCN_BAS NUMBER
 LAST_WRITE_SCN_WRP NUMBER
 LWN_SCN_BAS NUMBER
 LWN_SCN_WRP NUMBER
 LAST_WRITE_SCN NUMBER
 LAST_WRITE_SCN_TIME DATE
 REAL_REDO_SCN_BAS NUMBER
 REAL_REDO_SCN_WRP NUMBER
 REAL_WRITE_TIME DATE

54

0x60027c38

Okay, what do we know?
- We got a view called X$KCRFWS that describes redo writing.
- It contains one record (in my case).
- The starting address is in the ADDR field.
- Which field(s) are 0x60027c68 and 0x60027c98?

} 0x60027c68?

0x60027c98?

X$KCRFWS

• I	first	thought	using	the	“magic	offset	table”	
would	be	an	easy	way:	

SQL> select c.kqfconam, c.kqfcooff

 2 from x$kqfco c, x$kqfta t

 3 where t.indx = c.kqfcotab

 4 and t.kqftanam='X$KCRFWS'

 5 order by c.kqfcooff;

55

KQFCONAM KQFCOOFF
------------------------------ ----------
ADDR 0
INDX 0
REAL_REDO_SCN_WRP 0
REAL_REDO_SCN_BAS 0
LWN_SCN_WRP 0
LWN_SCN_BAS 0
ON_DISK_PING_SCN_WRP 0
INST_ID 0
CON_ID 0
NEXT_BLK 0
ON_DISK_SCN_BAS 0
ON_DISK_SCN_WRP 0
ON_DISK_PING_SCN_BAS 0
LAST_BLK 4
LAST_WRITE_SCN_TIME 12
LAST_WRITE_SCN_BAS 144
LAST_WRITE_SCN 144
LAST_WRITE_SCN_WRP 148
REAL_WRITE_TIME 328

0x60027c68-0x60027c38= 48
0x60027c98-0x60027c38= 96

Both offsets are not in the offset table…

X$KCRFWS

• Then	it	needs	a	more	“hardcore”	approach…	

• For	this	a	watchpoint	can	be	used	too.	
• A	watchpoint	breaks	execu9on	if	the	specified	
address	is	read,	wriFen	or	both.

56

X$KCRFWS

• Now	for	the	trick	to	find	the	field	that	belong	to	
0x60027c68	and	0x60027c98:	

– Put	a	read	watchpoint	on	the	addresses.	
– Query	X$KCRFWS	field	by	field	un9l	it	hits	the	
watchpoint.

57

©2013	Enkitec	
58

X$KCRFWS

• Address	0x60027c68:	
– LWN_SCN_BAS	and	LWN_SCN_WRP	

• LWN:	Log	Write	Number;	a	group	of	redo	blocks	to	be	
wriFen	by	the	LGWR	is	appointed	a	number	called	LWN.	

• LWN	SCN:	The	poten9al	maximum	SCN	in	the	current	LWN.	

• Address	0x60027c98:	
– ON_DISK_SCN_BAS	and	ON_DISK_SCN_WRP	

• On	disk	SCN:	the	highest	SCN	that	the	database	can	be	
recovered	to	with	wriFen	redo.

59

kcscur3

• Back	to	the	original	inves9ga9on.	
– The	first	argument	of	kcscur3	is	actually	a	variety	of	
SCN	numbers:	
• 0x60027c68:	LWN	SCN	
• 0x60027c98:	On	disk	SCN	
• 0x6001{b0:	global	(current)	SCN	

– So:	the	func9on	kcrf_commit_force(_int)	checks	
different	SCN	values	using	kcscur3	during	commit.	

• Let’s	look	at	what	is	happening	during	commit	
again:

60

©2013	Enkitec	
61

©2013	Enkitec	
62

kcrf_commit_force_int -> 1st function:
writing into the public log buffer and
semctl’ing the LGWR

kcrf_commit_force_int -> 2nd function:
check log writer progress, and go to sleep
if not progressed far enough

check the log writer progress, and sleep if
not progressed far enough

check the log writer progress, and sleep if
not progressed far enough

here is detected that the LGWR
progressed writing far enough.
mind the kcscur3() call to 0x6001fbb0

Yet	another	step…

• So,	we	now	know	that	the	commimng	process	
checks	the	on-disk	and	LWN	SCN.	
– I	think	the	on-disk	SCN	is	used	by	the	foreground	
process	to	check	for	redo	write	progress	in	polling	
mode	(and	post/wait	in	certain	cases).	

• Obviously,	another	process	must	change	the	on-
disk	SCN.	
– That	process	is	quite	likely	the	logwriter.	
– Or	the	LGWR	slaves,	which	I	disabled	for	the	sake	of	
clarity.

63

Yet	another	step…

• So,	I	suspect	the	log	writer:	
– Writes	the	log	buffer.	
– Then	updates	the	on-disk	SCN	to	indicate	write	progress.	

• To	understand	what	the	LGWR	does	we	can:	
– Put	a	read/write	watchpoint	on		

– 0x60027c68	(LWN	SCN)	
– ox60027c98	(on	disk	SCN)	

– To	see	what	the	LGWR	is	doing.

64

©2013	Enkitec	
65

watch *0x60027c68

watch *0x60027c98

commands 1-2

c

end

break kcsnew3

break kcscur3

break kcsadj3

break io_submit

break io_getevents_0_4

commands 3-7

silent

output $rip

printf “\t%x, %x, %x, %x\n”, $rdi, $rsi, $rdx, $rcx

c

end

break semtimedop

silent

printf “semtimedop\n”

c

end 66

• Log	writer	wake-up	func9ons	without	write:	
(void (*)()) 0xcc61670 <kcsnew3> 6001fbb0, a9060900, 60027c68, 3b37e000

Hardware watchpoint 2: *0x60027c68

Old value = 780329

New value = 780330

0x000000000cc61754 in kcsnew3 ()

(void (*)()) 0xcc61600 <kcscur3> 60027c98, a906073c, 1, 0
(void (*)()) 0xcc61600 <kcscur3> 60027c68, a9060708, 1, 0

(void (*)()) 0x2d5aed0 <kcsadj3> 60027c98, a9060708, 0, 0

Hardware watchpoint 1: *0x60027c98

Old value = 780329

New value = 780330
0x0000000002d5af53 in kcsadj3 ()

(void (*)()) 0xcc61600 <kcscur3> 6001fbb0, a9060270, 1, 79291280

67

Every wake-up of the log writer increases
the LWN SCN using the kcsnew3 function.

Also, the on-disk SCN is increased.

Please mind there is nothing written in
the online redo log!

• Log	writer	wake-up	func9ons	with	write:	
(void (*)()) 0xcc61670 <kcsnew3> 6001fbb0, a9060aa0, 60027c68, 3b37e000

Hardware watchpoint 2: *0x60027c68

Old value = 780330

New value = 780350

0x000000000cc61754 in kcsnew3 ()

(void (*)()) 0x2d5aed0 <kcsadj3> 60027d50, a9060860, 0, 0
(void (*)()) 0x7f4a75e0d690 <io_submit> 7929f000, 1, a9059360, 8f24bbe8

(void (*)()) 0x7f4a75e0d650 <io_getevents> 7929f000, 1, 80, a905f1e8

(void (*)()) 0xcc61600 <kcscur3> 60027c98, a906083c, 1, 0
(void (*)()) 0x2d5aed0 <kcsadj3> 60027c98, 92fac724, a9060834, a906082c

Hardware watchpoint 1: *0x60027c98

Old value = 780330

New value = 780350

0x0000000002d5af53 in kcsadj3 ()
(void (*)()) 0xcc61600 <kcscur3> 6001fbb0, a9060270, 1, 79291280

68

If the log writer writes something, the
on-disk SCN is increased too.

Probably not all SCNs need writing.

Look! There is another kcsadj3 call. This call
has 0x60027d50 as first argument.

0x60027d50 is REAL_REDO_SCN_(BAS|WRP)

The LWN and on-disk SCNs are increased
when the log writer writes too, as
expected.

Probably not all SCNs need writing.

• So,	what	I	think	is	happening	is:	
• A	FG	session	commits	and	notes	commit	SCN.	
• FG	semctl’s	LGWR	to	write*.	
• Then	checks	on-disk	SCN	if	SCN	increased	
beyond	its	commit	SCN,	then	nanosleep().	

• LGWR	determines	LWN	SCN.	
• Writes	blocks	in	the	LWN	batch.	
• Updates	on-disk	SCN.	
• FG	reads	updated	on-disk	SCN	and	con9nues.	

69

• How	to	validate	a	FG	just	checks	the	on-disk	SCN?	
(void (*)()) 0xcc61670 <kcsnew3> 6001fbb0, a9060aa0, 60027c68, 3b37e000

Hardware watchpoint 2: *0x60027c68

Old value = 780330

New value = 780350

0x000000000cc61754 in kcsnew3 ()

(void (*)()) 0x2d5aed0 <kcsadj3> 60027d50, a9060860, 0, 0
(void (*)()) 0x7f4a75e0d690 <io_submit> 7929f000, 1, a9059360, 8f24bbe8

(void (*)()) 0x7f4a75e0d650 <io_getevents> 7929f000, 1, 80, a905f1e8

(void (*)()) 0xcc61600 <kcscur3> 60027c98, a906083c, 1, 0
(void (*)()) 0x2d5aed0 <kcsadj3> 60027c98, 92fac724, a9060834, a906082c

Hardware watchpoint 1: *0x60027c98

Old value = 780330

New value = 780350

0x0000000002d5af53 in kcsadj3 ()
(void (*)()) 0xcc61600 <kcscur3> 6001fbb0, a9060270, 1, 79291280

70

At this point the on-disk SCN is updated.
This supposedly makes the FG to continue
if the SCN is high enough.

So what if we make the LGWR stop here?

The FG should keep on waiting.

While the LGWR is suspended at this
point, the FG waits.

We can prove the FG only waits for the
on-disk SCN, if the FG continues when
we:
- Keep the LGWR suspended, but
- MANUALLY update the on-disk SCN

• The	following	techniques	are	for	experimen9ng	
and	inves9ga9on	ONLY.	

• Doing	this	on	a	real,	live	database	could	cause	
corrup3on	or	loss	of	the	en3re	database!	

WARNING

71

©2013	Enkitec	
72

©2013	Enkitec	
73

©2013	Enkitec	
74

©2013	Enkitec	
75

• A	foreground	session	has	two	commit	modes:	
• Post/wait,	the	tradi9onal	way.	
• Polling,	the	new	method.	

• A	foreground	session	no9fies	the	LGWR	by	
execu9ng	a	‘semctl’	call.	
• No	no9fica9on	necessary	if	LGWR	already	
progressed	beyond	FG	commit	SCN.

Conclusion

76

• There	are	a	couple	of	SCN	values	the	database	
keeps	in	the	fixed	SGA:		
• kcbgscn,	global/current	SCN,	0x6001{b0	
• kcrfsg,	LWN	SCN,	0x60027c68	
• kcrfsg,	on-disk	SCN,	0x60027c98	
• kcrfsg,	real	redo	SCN,	0x60027d50	

• The	kcscur3	func9on	seems	to	be	the	func9on	to	
read	these	variables.

Conclusion

77

• The	foreground	process	uses	the	
kcrf_commit_force(_int)	func9on	to:	
• Flush	its	redo	data	into	the	public	logbuffer.	
• Check	log	writer	progress	via	the	on-disk	SCN.	

• This	of	course	is	in	polling	mode.	
– With	post/wait,	the	on-disk	SCN	is	checked	too!

Conclusion

78

• The	log	writer	has	a	certain	cycle	every	3	sec:	
• Read	current	SCN	and	LWN	SCN.	
• Update	LWN	SCN.	
• If	needed:	update	real	redo	SCN	and	write	out	
public	log	buffer.	

• Update	on-disk	SCN.	

• It	seems	the	SCN	set	as	LWN	SCN	at	the	beginning	
of	the	cycle,	is	equal	to	the	on-disk	SCN.

Conclusion

79

• LWN	and	on-disk	SCNs	progress	even	if	there	is	no	
redo	wriFen	from	log	buffer	to	disk.	

• The	SCN	of	the	latest	redo	truly	wriFen	to	disk	is	in	
the	real	redo	SCN.

Conclusion

80

