# Identification of Performance Problems without the Diagnostic Pack

**Christian Antognini** 

Oracle Midlands Birmingham (UK), 1 September 2015

BASLE • BERN • BRUGG • DÜSSELDORF • FRANKFURT A.M. • FREIBURG I.BR. • GENEVA HAMBURG • COPENHAGEN • LAUSANNE • MUNICH • STUTTGART • VIENNA • ZURICH



Trivadis makes IT

easier.

#### @ChrisAntognini

Senior principal consultant, trainer and partner at Trivadis in Zurich (CH)

- christian.antognini@trivadis.com
- http://antognini.ch
- Focus: get the most out of Oracle Database
- Logical and physical database design
- Query optimizer
  - Application performance management

Author of Troubleshooting Oracle Performance (Apress, 2008/14)

OakTable Network, Oracle ACE Director



makes IT easier.



- 1. Introduction
- 2. Analysis of Reproducible Problems
- 3. Real-Time Analysis of Irreproducible Problems
- 4. Postmortem Analysis of Irreproducible Problems
- 5. Third-party Tools



## Introduction





# The techniques described in this presentation are useful only to identify performance problems that are caused by the database layer.



## **Objective of a Performance Analysis**

Discover the most time-consuming SQL statements or PL/SQL code invocations.

For each of those time-consuming statements, gather additional information that can help in understanding the problem.

- Execution plan
- Runtime statistics like the number of processed rows and the CPU utilization
- Experienced wait events



#### Basic Questions that Require Answers

Is the problem reproducible at will?

Yes: everything is much easier than if you can't!

No: see next bullet...

For irreproducible problems, is it possible to wait till the problem occurs again?

- Yes: a real-time analysis has to be carried out
- No: a repository holding historical performance statistics is required

Sec. 2

Sec. 3

Sec. 4

## **Analysis of Reproducible Problems**





The most efficient way to approach a reproducible problem is to take advantage of one of the available tracing and profiling features to perform a controlled measurement while an application is experiencing the problem.

The analysis starts by tracing the database calls through SQL trace.

- If most of the time is spent executing SQL statements, the trace file(s) contain all the necessary information for a detailed analysis.
- If most of the time is spent executing PL/SQL code, a profiling of the PL/SQL code is needed.



#### Analysis Without Diagnostics Pack

The analysis doesn't depend on the availability of the Diagnostic Pack option.

The only feature you could consider to use is Real-time Monitoring.

- Except in 12c, it's useful for single executions only
- Diagnostic and Tuning Pack required



#### Tracing Database Calls

There are a number of ways to enable SQL trace.

- ALTER SESSION
- DBMS\_MONITOR
- DBMS\_SESSION

When enabled, SQL trace generates trace files containing not only the executed SQL statements, but also in-depth performance figures about their execution.

The trace files have to be analysed with a profiler.

- TKPROF
- Third party (e.g. TVD\$XTAT and Method R Profiler)

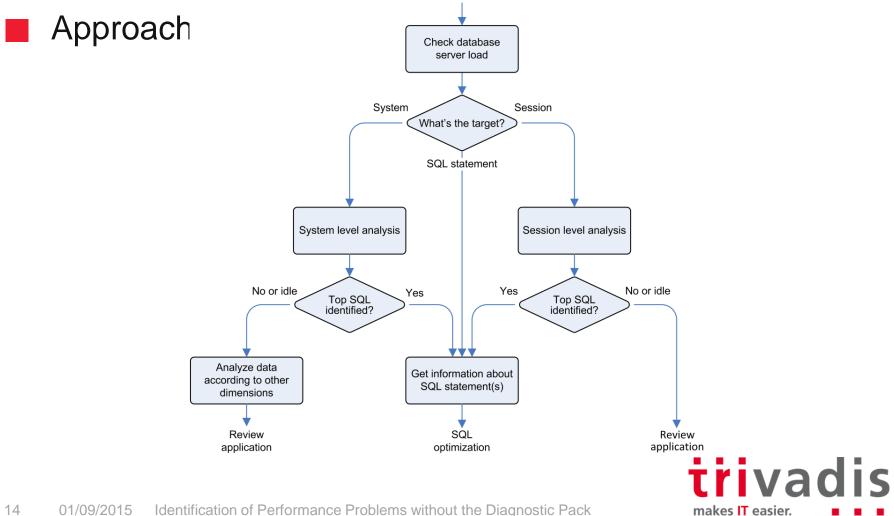


## Profiling PL/SQL Code

The database engine provides two profilers integrated in the PL/SQL engine.

- Call-level profiler (a.k.a. hierarchical profiler; introduced in 11.1): DBMS\_HPROF
  - Line-level profiler: DBMS\_PROFILER

Except if line-level information is needed, the call-level profiler is superior.


The easiest way to use a profiler is to take advantage of the support provided by graphical tools.

- SQL Developer
- Third party (e.g. TOAD and PL/SQL Developer)



## **Real-Time Analysis of Irreproducible Problems**





## Dynamic Performance Views Provide the Necessary Information

**OS** Statistics

**Time Model Statistics** 

Wait Classes and Wait Events

System and Session Statistics

**Metrics** 

Diagnostic Pack required for metrics history only **Current Sessions Status** 

Active Session History

Diagnostic Pack required

**SQL** Statement Statistics

**Real-time Monitoring** 

Diagnostic and Tuning Pack required



#### Analysis Without Diagnostics Pack

There are two main challenges:

Enterprise Manager can't be used

- Third-party tools that provide similar features exist

Most of the dynamic performance views provide only cumulated statistics

- Metrics are an exception
- Utilities that sample the cumulated statistics are needed

This section focuses on a set of scripts that are freely available, so they can be used on any system.



#### Database Server Load

Check not only whether the database server is CPU bound, but also whether there are processes not related to the database instance that consume a lot of CPU time.



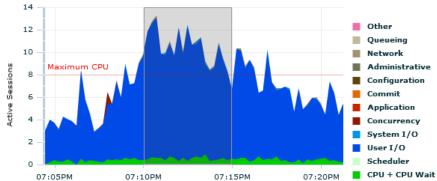


# Database Server Load Based on V\$OSSTAT and V\$METRIC

SQL> @<u>host\_load.sql</u> 16

| BEGIN T  | IME DURATION | DB FG CPU | DB BG CPU | NON DB CPU | OS LOAD | NUM CPU |
|----------|--------------|-----------|-----------|------------|---------|---------|
|          |              |           |           |            |         |         |
| 14:05:00 | 0 60.10      | 1.71      | 0.03      | 0.03       | 4.09    | 8       |
| 14:06:00 | 60.08        | 1.62      | 0.03      | 0.04       | 4.13    | 8       |
| 14:07:00 | 59.10        | 1.89      | 0.03      | 0.04       | 4.96    | 8       |
| 14:08:00 | 0 60.11      | 1.93      | 0.03      | 0.03       | 5.29    | 8       |
| 14:09:00 | 0 60.09      | 1.73      | 0.03      | 0.59       | 4.60    | 8       |
| 14:10:00 | 0 60.10      | 1.57      | 0.02      | 3.64       | 7.50    | 8       |
| 14:11:00 | 0 60.16      | 1.15      | 0.02      | 6.60       | 11.82   | 8       |
| 14:12:00 | 0 60.11      | 1.21      | 0.02      | 6.60       | 13.77   | 8       |
|          |              |           |           |            |         |         |

trivadis


makes IT easier.

18

#### System Level Analysis

Several steps have to be carried out:

- Check the average number of active sessions and the portion of time they spend for every wait class
- 2. Check system-wide time model statistics
- 3. Check whether few SQL statements are responsible for most of the activity
- 4. (Optional) Check whether specific sessions/components/... are responsible for most of the activity



trivadis

makes IT easier.

#### System Level Load Based on V\$SYS\_TIME\_MODEL and V\$SYSTEM\_WAIT\_CLASS

#### SQL> @system\_activity.sql 15 20

| Time     | AAS  | <b>Othr</b> % | Net% | <b>Adm</b> % | Conf% | Comm% | App1% | Conc% | SysIO% | <b>UsrIO</b> % | CPU% |
|----------|------|---------------|------|--------------|-------|-------|-------|-------|--------|----------------|------|
|          |      |               |      |              |       |       |       |       |        |                |      |
| 19:10:11 | 9.7  | 0.0           | 0.0  | 0.0          | 0.0   | 0.4   | 0.0   | 0.0   | 0.9    | 94.8           | 3.8  |
| 19:10:26 | 10.0 | 0.0           | 0.0  | 0.0          | 0.0   | 0.5   | 0.0   | 0.0   | 1.0    | 94.6           | 3.9  |
| 19:10:41 | 10.0 | 0.0           | 0.0  | 0.0          | 0.0   | 0.4   | 0.0   | 0.0   | 1.0    | 94.8           | 3.8  |
| 19:10:56 | 9.9  | 0.0           | 0.0  | 0.0          | 0.0   | 0.4   | 0.0   | 0.0   | 1.0    | 94.6           | 4.0  |
| 19:11:11 | 9.8  | 0.0           | 0.0  | 0.0          | 0.2   | 1.0   | 0.0   | 0.0   | 1.2    | 93.7           | 4.0  |
| 19:11:26 | 9.5  | 0.0           | 0.0  | 0.0          | 0.0   | 0.4   | 0.0   | 0.0   | 0.9    | 94.8           | 3.9  |
|          |      |               |      |              |       |       |       |       |        |                |      |
|          |      |               |      |              |       |       |       |       |        |                |      |



### System Level Time Model Based on V\$SYS\_TIME\_MODEL

| SQL> @t | ime model.sql 15 2             |            |           |
|---------|--------------------------------|------------|-----------|
| Time    | Statistic                      | AvgActSess | Activity% |
| 19:14:4 | 9 DB time                      | 9.8        | 98.6      |
|         | .DB CPU                        | 0.3        | 3.4       |
|         | .sql execute elapsed time      | 9.7        | 97.3      |
|         | .PL/SQL execution elapsed time | 0.1        | 1.2       |
|         | background elapsed time        | 0.1        | 1.4       |
|         | .background cpu time           | 0.0        | 0.4       |
| •••     |                                |            |           |



## Top Sessions Based on V\$SYSSTAT, V\$SYS\_TIME\_ MODEL, V\$SESS\_TIME\_MODEL and V\$SESSION

#### SQL> @active\_sessions.sql 15 1 10

| Time     | #Sessions | #Logins | SessionId  | User | Prog | ram  |        | Activity | 18  |
|----------|-----------|---------|------------|------|------|------|--------|----------|-----|
|          |           |         |            |      |      |      |        |          |     |
| 19:14:49 | 117       | 0       | 195        | SOE  | JDBC | Thin | Client | 1.       | . 8 |
|          |           |         | 224        | SOE  | JDBC | Thin | Client | 1.       | . 5 |
|          |           |         | 225        | SOE  | JDBC | Thin | Client | 1.       | . 5 |
|          |           |         |            |      |      |      |        |          |     |
|          |           |         | 16         | SOE  | JDBC | Thin | Client | 1.       | . 4 |
|          |           |         | 171        | SOE  | JDBC | Thin | Client | 1.       | 4   |
|          |           |         | 68         | SOE  | JDBC | Thin | Client | 1.       | 4   |
|          |           |         | Top-10 Tot | -    |      |      |        | 14.      | . 9 |
| •••      |           |         |            |      |      |      |        |          |     |

trivadis makes IT easier.

#### System Level Analysis with Snapper

Snapper is a script developed by Tanel Põder.

Its key functionality is to sample V\$SESSION.

During the sampling, it checks the status of the specified sessions and, for active sessions, it gathers information about their activity.

It's a very flexible and powerful script that accepts many parameters.



#### System Level Analysis with Snapper – List Top SQL Statements

| Active%   SQL_ID<br>196%   c13sma6rkr27c<br>186%   8dq0v1mjngj7t<br>122%   bymb3ujkr3ubk<br>107%   7hk2m2702ua0g<br>82%   0yas01u2p9ch4<br>63%   8z3542ffmp562<br>62%   0bzhqhhj9mpaa<br>30%   5mddt5kt45rg3 | SQL> @ <u>snapper.sql</u> ash=sql_id 15 1 a | 11 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----|
| 196%   c13sma6rkr27c<br>186%   8dq0v1mjngj7t<br>122%   bymb3ujkr3ubk<br>107%   7hk2m2702ua0g<br>82%   0yas01u2p9ch4<br>63%   8z3542ffmp562<br>62%   0bzhqhhj9mpaa                                            |                                             |    |
| 186%   8dq0v1mjngj7t<br>122%   bymb3ujkr3ubk<br>107%   7hk2m2702ua0g<br>82%   0yas01u2p9ch4<br>63%   8z3542ffmp562<br>62%   0bzhqhhj9mpaa                                                                    | ACTIVE%   SQL_ID                            |    |
| 122%   bymb3ujkr3ubk<br>107%   7hk2m2702ua0g<br>82%   0yas01u2p9ch4<br>63%   8z3542ffmp562<br>62%   0bzhqhhj9mpaa                                                                                            | 196%   c13sma6rkr27c                        |    |
| 107%   7hk2m2702ua0g<br>82%   0yas01u2p9ch4<br>63%   8z3542ffmp562<br>62%   0bzhqhhj9mpaa                                                                                                                    | <b>186%   8dq0v1mjngj7t</b>                 |    |
| 82%   0yas01u2p9ch4<br>63%   8z3542ffmp562<br>62%   0bzhqhhj9mpaa                                                                                                                                            | 122%   bymb3ujkr3ubk                        |    |
| 63%   8z3542ffmp562<br>62%   0bzhqhhj9mpaa                                                                                                                                                                   | <b>107%   7hk2m2702ua0g</b>                 |    |
| 62%   Obzhqhhj9mpaa                                                                                                                                                                                          | 82%   0yas01u2p9ch4                         |    |
|                                                                                                                                                                                                              | 63%   8z3542ffmp562                         |    |
| 30%   5mddt5kt45rg3                                                                                                                                                                                          | 62%   Obzhqhhj9mpaa                         |    |
|                                                                                                                                                                                                              | 30%   5mddt5kt45rg3                         |    |



## Session Level Analysis with Snapper – List Top Wait Events

| SQL> @ <u>snapper.sql</u> ash=event 15 1 172                               | With Snapper it's<br>possible to target<br>either one, several or |  |
|----------------------------------------------------------------------------|-------------------------------------------------------------------|--|
| Active%   EVENT                                                            | all sessions                                                      |  |
| 22%   db file sequential read<br>1%   ON CPU<br>1%   db file parallel read |                                                                   |  |



#### SQL Statement Information

For SQL statements that are responsible for a large part of the activity, more information is needed.

**Runtime statistics** 

| V\$SQLAREA     | <u>sqlarea.sql</u>  |
|----------------|---------------------|
| V\$SQL         | <u>sql.sql</u>      |
| V\$SQLSTATS    | <u>sqlstats.sql</u> |
| Execution plan | DBMS_XPLAN          |

trivadis makes IT easier.

## **Postmortem Analysis of Irreproducible Problems**





To analyse a performance problem that happened in the past, a repository containing performance statistics covering the period of time to analyse is required.

Oracle provides two repositories:

- Automatic Workload Repository (AWR)
  - Diagnostic Pack required
- Statspack



#### Automatic Workload Repository vs. Statspack

AWR is fully integrated and automatically installed

AWR stores system-level, SQL-level as well as session-level (ASH) data

AWR is an Enterprise Edition option available as of 10g only

Enterprise Manager provides a GUI for AWR

Statspack requires a manual installation

Statspack stores system-level and SQL-level data

Statspack is free of charge and available with all editions since 8i

No Enterprise Manager integration



#### Analysis Without Diagnostics Pack

Almost everything provided by an AWR report is provided by a Statspack report.

There's no major difference in reading the two reports.

What's really missing is the persisted ASH data.

Third-party implementations that allow to implement the roadmap discussed in the previous section exist



## **Third-party Tools**



#### Third-party Tools

A number of third-party tools that doesn't require the Diagnostic Pack option exists!

Refer to Kyle Hailey's <u>Best Oracle</u> <u>Performance Tools</u> list for an overview. I presently advise to use <u>Lighty for</u> <u>Oracle</u>.

- It has a very good price/performance ratio!
- It supports well the approaches for the analysis of irreproducible problems (both in real time and postmortem) described in this presentation and in my book



#### Core Messages



It's possible to work without the Diagnostic Pack option

Doesn't make things easier, though

A toolkit is required

Scripts and/or a graphical tool

With and without Diagnostic Pack option it's essential to approach performance problems in a methodological way!

> trivadis makes IT easier.



Troubleshooting Oracle Performance, 2nd Edition, Apress (2014) <a href="http://antognini.ch/top/">http://antognini.ch/top/</a>

Kyle Hailey's Best Oracle Performance Tools list <a href="http://datavirtualizer.com/best-oracle-performance-tools/">http://datavirtualizer.com/best-oracle-performance-tools/</a>

The scripts referenced through the presentation can be downloaded from <a href="http://antognini.ch/downloads/top2/">http://antognini.ch/downloads/top2/</a>

Tanel Põder's Snapper can be downloaded from <a href="http://blog.tanelpoder.com/files/scripts/snapper.sql">http://blog.tanelpoder.com/files/scripts/snapper.sql</a>



# **Questions and Answers**

#### **Christian Antognini**

#### Senior Principal Consultant christian.antognini@trivadis.com



