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 Graduated from University of Helsinki (Master of Science, computer science), currently a doctoral 
student, researcher and lecturer (databases, Big Data, Multi-model Databases, methods and tools for 
utilizing semi-structured data for decision making) at University of Helsinki

 Worked with Oracle products since 1993, worked for IT since 1990
 Data and Database!
 CEO for Miracle Finland Oy 
 Oracle ACE Director
 Ambassador for EOUC (EMEA Oracle Users Group Community)
 Listed as one of the TOP 100 influences on IT sector in Finland (2015, 2016, 2017, 2018)
 Public speaker and an author
 Winner of Devvy for Database Design Category, 2015
 Author of the  book Oracle SQL Developer Data Modeler for Database Design Mastery (Oracle Press, 

2015), co-author for Real World SQL and PL/SQL: Advice from the Experts (Oracle Press, 2016)

Introduction, Heli
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What is Machine Learning?

 An important part of Artificial Intelligence (AI)

 Machine learning (ML) teaches computers to learn from experience
(algorithms)

 “field of study that gives computers the ability to learn without being 
explicitly programmed“ -- Arthur Samuel, 1959

 A systematic study of algorithms and systems that improve their
knowledge or performance with experience
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 Spam filters, Log filters/alarms

 Data analytics

 Image recognition, Speech recognition

 Medical diagnosis

 Robotics

 Fraud protection/detection (credit card)

 Product / music / movie recommendation

 …

Real life use cases for ML
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 Demo

A simple example, Chatbot
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 Online shopping (Amazon, Search, recommendations)

 Voice-to-Text, Smart Personal Assistants (mobile services: ”recipe for 
bread”, ”find the nearest grocery”)

 Siri, Google Assistant, Alexa, Echo, Cortana,…

 Facebook

 …

Real life use cases for ML
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 The face recognition (demo)

My real life use case
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An example of something more complicated
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 “Give people the power to build community and bring the world closer together.”

 Facebook connects more than two billion people as of December 2017

 Could not be done without ML

 The massive amount of data required by machine learning services presents challenges to 
Facebook’s datacenters. 

 Several techniques are used to efficiently feed data to the models including decoupling of 
data feed and training, data/compute co-location, and networking optimizations.

 Disaster recovery planning is essential

 actively evaluating and prototyping new hardware solutions while remaining cognizant of 
game changing algorithmic innovations

Facebook’s mission 
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 News Feed ranking

 Ads

 Search

 Sigma

 Lumos

 Facer

 Language Translation

 Speech Recognition

Facebook, some use cases for ML, the Products
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 ML is used for 
 ranking and personalizing News Feed stories

 filtering out offensive content

 highlighting trending topics

 ranking search results, and much more.

 General models are trained to determine various user and environmental factors 
that should ultimately determine the rank order of content. 

 The model is used to generate a personalized set of the best posts, images, and 
other content to display from thousands of candidates, and the best ordering of 
this chosen content.

News Feed
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 Online advertising allows advertisers to only bid and pay for measurable user 
responses, such as clicks on ads. 

 As a consequence, click prediction systems are central to most online advertising 
systems.

 General Ads models are trained to learn how user traits, user context, previous 
interactions, and advertisement attributes can be most predictive of the 
likelihood of clicking on an ad, visiting a website, and/or purchasing a product. 

 Inputs are run through a trained model to immediately determine which ads to 
display to a particular Facebook user.

Ads
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 The click prediction system needs to be robust and adaptive, and capable 
of learning from massive volumes of data.

 At Facebook they use a model which combines decision trees with logistic 
regression

 Based on their experience: the most important thing is to have the right 
features (those capturing historical information about the user or ad 
dominate other types of features) and the right model

 Measures: the accuracy of prediction

Predicting the Clicks
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X. He, J. Pan, O. Jun, T. Xu, B. Liu, T. Xu, Y. Shi, A. Atallah, R. Herbrich, S. Bowers, and J. Quinonero Candela, “Practical lessons from predicting clicks on ads at facebook,” in 
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 Launches a series of distinct and specialized sub-searches to the various 
verticals, e.g., videos, photos, people, events, etc. 

 A classifier layer is run atop the various search verticals to predict which 
of the many verticals to search (searching all possible verticals would be 
inefficient)

 The classifier and these search verticals consist of 

 an offline stage to train the models

 and an online stage to run the models and perform the classification 
and search

Search
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 General classification and anomaly detection framework that is used for a 
variety of internal applications (site integrity, spam detection, payments, 
registration, unauthorized employee access, and event 
recommendations)

 Sigma includes hundreds of distinct models running in production everyday

 each model is trained to detect anomalies (e.g. classify content)

Sigma
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 Extract high-level attributes and embeddings from an image and its 
content

 That data can be used as input to other products and services

 for example as it were text.

Lumos
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 Facebook’s face detection and recognition framework

 Given an image

 finds all of the faces in that image

 runs a user-specific facial-recognition algorithm to determine the likelihood of 
that face belonging to one of your top-N friends who have enabled face 
recognition 

 This allows Facebook to suggest which of your friends you might want to 
tag within the photos you upload.

Facer
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 Service that manages internationalization of Facebook content

 Supports translations for more than 45 languages (as the source or 
target language)

 supports more than 2000 translation directions

 serves 4.5B translated post impressions every day

 Each language pair direction has its own model

 multi-language models are being considered

Language Translation
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 Converts audio streams into text

 Provides automated captioning for video

 Most streams are English language

 other languages will be available in future

 Additionally, non-language audio events are also detected with a similar 
system (simpler model).

Speech Recognition
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Algorithms Facebook uses for these services
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How do they do all this at Facebook?



Copyright © Miracle Finland Oy

FBLearner Platform
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 The starting point for a ML modeling task is to gather and generate 
features. 

 The Feature Store is a catalog of several feature generators

 can be used both for training and real-time prediction

 serves as a marketplace that multiple teams can use to share and discover 
features 

FBLearner Feature Store
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 Facebook’s machine learning platform for model training
 Workflows: A workflow is a single pipeline defined within FBLearner Flow and is the entry point for all 

machine learning tasks. 
 Each workflow performs a specific job, such as training and evaluation of a specific model. 
 Workflows are defined in terms of operators and can be parallelized.

 Operators: Operators are the building blocks of workflows
 In FBLearner Flow, operators are the smallest unit of execution and run on a single machine.

 Channels: Channels represent inputs and outputs, which flow between operators within a workflow. 
 All channels are typed using a custom type system.

 Flow has tooling for experiment management. 
 The user interface keeps track of all of the artifacts and metrics generated by each workflow execution 

or experiment.
 The user interface makes it simple to compare and manage these experiments.

FBLearner Flow
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 The platform consists of three core components: 

 an authorship and execution environment for custom distributed workflows

 an experimentation management UI for launching experiments and viewing 
results

 numerous predefined pipelines for training the most commonly used machine 
learning algorithms at Facebook.

FBLearner Flow
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 Facebook’s internal inference engine that uses the models trained in FBLearner
Flow to provide predictions in real time. 
 Can be used 

 as a multitenancy service 

 or as a library that can be integrated in product specific backend services

 Is used by multiple product teams at Facebook, many of which require low latency 
solutions.

 The direct integration between Flow and Predictor also helps with
 running online experiments 

 managing multiple versions of models in productions

FBLearner Predictor
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 Two distinct but synergistic frameworks for deep learning at Facebook: 

 PyTorch, which is optimized for research

 Caffe2, which is optimized for production

Frameworks for deep learning
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 PyTorch is the framework for AI research at Facebook which enables rapid 
experimentation
 Flexibility

 Debugging

 Dynamic neural networks

 Not optimized for production and mobile deployments (Python)

 When research projects produce valuable results, the models need to be 
transferred to production. 
 Traditionally, rewriting the training pipeline in a product environment with other 

frameworks. 

PyTorch
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 Facebook’s in-house production framework 

 For training and deploying large-scale machine learning models

 Focuses on several key features required by products: 

 Performance

 cross-platform support

 coverage for fundamental machine learning algorithms (convolutional neural 
networks (CNNs), recurrent networks (RNNs), and multi-layer perceptrons
(MLPs)) and up to tens of billions of parameters

Caffe2
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 Different tools are better for different subset of problems and have varying tradeoffs on 
flexibility, performance, and supported platforms . As a result, there should be a way to exchange 
trained models between different frameworks or platforms.

 ONNX is a format to represent deep learning models in a standard way to enable interoperability 
across different frameworks and vendor-optimized libraries. 

 ONNX is designed as an open specification

 Within Facebook, ONNX is used for transferring research models from the PyTorch environment 
to high-performance production environment in Caffe2. 
 ONNX provides the ability to automatically capture and translate static parts of the models. 
 An additional toolchain facilitates transfer of dynamic graph parts from Python by either mapping 

them to control-flow primitives in Caffe2 or reimplementing them in C++ as custom operators.

Open Neural Network Exchange, ONNX
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Caffe2 and PyTorch join forces to create a Research + Production platform 
PyTorch 1.0:

https://caffe2.ai/blog/2018/05/02/Caffe2_PyTorch_1_0.html

“We realized that in order to deliver the best user experience, it makes 
sense to combine the beneficial traits of Caffe2 and PyTorch into a single 
package and enable a smooth transition from fast prototyping to fast 
execution. It’d also improve our developer efficiency by more easily 
utilizing a shared set of tools.”

Caffe2 and PyTorch projects are merging

https://caffe2.ai/blog/2018/05/02/Caffe2_PyTorch_1_0.html
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 success is predicated on the availability of extensive, high-quality data

 complex preprocessing logic is applied to ensure that data is cleaned and 
normalized to allow efficient transfer and easy learning

 The ability to rapidly process and feed these data to the training machines 
is important for ensuring that we have fast and efficient offline training.

 These impose very high resource requirement especially on storage, 
network, and CPU.

 actively evaluating and prototyping new hardware solutions while 
remaining cognizant of game changing algorithmic innovations

The success factors 1/2
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 https://research.fb.com/category/machine-learning/

Facebook, research

https://research.fb.com/category/machine-learning/
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 Knowing what to measure to know what to improve

The success factors 2/2
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 Number of positives, number of negatives, number of true positives, number of 
false positives, number of true negatives, number of false negatives

 Portion of positives, portion of negatives

 Class ratio

 Accuracy, Error rate

 ROC curve, coverage curve,

 …

 It all depends on how we define the performance for the answer to our
question (experiment): experimental objective

What to measure?
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 “we noticed that the largest improvements in accuracy often came from 
quick experiments, feature engineering, and model tuning rather than 
applying fundamentally different algorithms”

 An engineer may need to attempt hundreds of experiments before 
finding a successful new feature or set of hyperparameters. 

Facebook
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 Oracle SQL Developer is a free tool from Oracle
 Has an add-on called Data Miner
 Advanced analytics (Data Miner uses that) is a licensed product (in the EE 

database separately licensed, in the Cloud: Database Service either High
Performace Package or Extreme Performance Package) 

 Oracle Data Miner GUI Installation Instructions
http://www.oracle.com/technetwork/database/options/advanced-
analytics/odm/odmrinstallation-2080768.html
 Tutorial
http://www.oracle.com/webfolder/technetwork/tutorials/obe/db/12c/BigDataDM/
ODM12c-BDL4.html

Oracle SQL Developer, Data Miner

http://www.oracle.com/technetwork/database/options/advanced-analytics/odm/odmrinstallation-2080768.html
http://www.oracle.com/webfolder/technetwork/tutorials/obe/db/12c/BigDataDM/ODM12c-BDL4.html
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Oracle SQL Developer demo
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Chapter 10
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 a component of the Oracle Advanced Analytics Option (payable option)

 open source R statistical programming language in an Oracle database

Oracle R Enterprice



Copyright © Miracle Finland Oy

Chapter 11
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 Predictive Queries enable you to build and score data quickly using the 
in-database data mining algorithms

 Predictive Queries can be 

 built using Oracle Data Miner 

 written using SQL

Predictive Queries in Oracle 12c
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Chapter 12
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SQL, Demo (Oracle Autonomous DW)
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 Python
 R
 C/C++
 Java
 JavaScript
 Julia, Scala, Ruby, Octave, MATLAB, SAS

 https://medium.com/towards-data-science/what-is-the-best-programming-language-for-
machine-learning-a745c156d6b7

And so many more languages to learn…

https://medium.com/towards-data-science/what-is-the-best-programming-language-for-machine-learning-a745c156d6b7
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 AI and machine learning is here and it’s the future

 So many interesting areas to learn

 Pick your area and START LEARNING!

The future and now!
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 ML can be used ”everywhere”:
 Spam filters

 Log filters (and alarms)

 Data analytics

 Image recognition

 Speech recognition

 Medical diagnosis

 Robotics

 Chatbots

 …

Conclusion
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 Facebook uses ML ”everywhere”
 News Feed ranking

 Ads

 Search

 Sigma

 Lumos

 Facer

 Language Translation

 Speech Recognition

Conclusion
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 You can use ML ”everywhere”

 Start small and when you learn more do more

 Define a Task and let ML solve it 

 Machines are not taking our jobs but helping us to do more interesting things

 With ML we can understand our data better and make better decisions

Conclusion
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