
Wisdom comes from experience. Experience is often a result of lack of wisdom.

BLOG: http://chandlerdba.com
Twitter: @chandlerDBA

E: neil@chandler.uk.com

Neil Chandler
Chandler Systems

Independent Database Consultant
Working in IT for over 30 years [WTF!]

It’s not worth doing something unless someone, somewhere, would much rather you weren’t doing it.

STATISTICS. DOING IT RIGHT, THE EASY WAY

sorry :-)

STATISTICS. DOING IT RIGHT, THE EASY WAY

A long time ago…

STATISTICS. DOING IT RIGHT, THE EASY WAY

(published) Rank of RBO Access Path Heuristics
RBO Path 1: Single Row by Rowid
RBO Path 2: Single Row by Cluster Join
RBO Path 3: Single Row by Hash Cluster Key with Unique or Primary Key
RBO Path 4: Single Row by Unique or Primary Key
RBO Path 5: Clustered Join
RBO Path 6: Hash Cluster Key
RBO Path 7: Indexed Cluster Key
RBO Path 8: Composite Index
RBO Path 9: Single-Column Indexes
RBO Path 10: Bounded Range Search on Indexed Columns
RBO Path 11: Unbounded Range Search on Indexed Columns
RBO Path 12: Sort Merge Join
RBO Path 13: MAX or MIN of Indexed Column
RBO Path 14: ORDER BY on Indexed Column
RBO Path 15: Full Table Scan

1. Deprecated in Oracle 10G, but still used by Oracle themselves
2. Didn't know anything about the shape of your data
3. Followed rules based upon how you coded your SQL,

plus some heuristics for the access path
4. Probably the source of the "Full Table Scan is Bad" myth
5. Still used (a little bit) by Oracle when

accessing the Data Dictionary

from v$sql in a 19C database:

select /*+ rule */ bucket_cnt,

row_cnt, cache_cnt, null_cnt,

 timestamp#, sample_size, minimum,

maximum, distcnt, lowval,

 hival, density, col#, spare1,

spare2, avgcln, minimum_enc,

maximum_enc from hist_head$ where

obj#=:1 and intcol#=:2

STATISTICS. DOING IT RIGHT, THE EASY WAY

Diagram borrowed from Oracle 19c Tuning Guide

STATISTICS. DOING IT RIGHT, THE EASY WAY

DBA_TABLES
DBA_TAB_STATISTICS
DBA_TAB_PARTITIONS
DBA_TAB_SUB_PARTITIONS
DBA_TAB_COLUMNS
DBA_TAB_COL_STATISTICS
DBA_PART_COL_STATISTICS
DBA_SUBPART_COL_STATISTICS
DBA_INDEXES
DBA_IND_STATISTICS
DBA_IND_PARTITIONS
DBA_IND_SUBPARTIONS
DBA_TAB_HISTOGRAMS
DBA_PART_HISTOGRAMS
DBA_SUBPART_HISTOGRAMS

STATISTICS. DOING IT RIGHT, THE EASY WAY

OWNER Owner of the object

TABLE_NAME Name of the table

PARTITION_NAME Name of the partition

PARTITION_POSITION Position of the partition within table

SUBPARTITION_NAME Name of the subpartition

SUBPARTITION_POSITION Position of the subpartition within partition

OBJECT_TYPE Type of the object (TABLE, PARTITION, SUBPARTITION)

NUM_ROWS The number of rows in the object

BLOCKS The number of used blocks in the object

EMPTY_BLOCKS The number of empty blocks in the object

AVG_SPACE The average available free space in the object

CHAIN_CNT The number of chained rows in the object

AVG_ROW_LEN The average row length, including row overhead

AVG_SPACE_FREELIST_BLOCKS The average freespace of all blocks on a freelist

NUM_FREELIST_BLOCKS The number of blocks on the freelist

AVG_CACHED_BLOCKS Average number of blocks in buffer cache

AVG_CACHE_HIT_RATIO Average cache hit ratio for the object

IM_IMCU_COUNT Number of IMCUs in the object

IM_BLOCK_COUNT Number of inmemory blocks in the object

IM_STAT_UPDATE_TIME The timestamp most recent update to the inmemory stat

SCAN_RATE Scan rate for the object

SAMPLE_SIZE The sample size used in analyzing this table

LAST_ANALYZED The date of the most recent time this table was analyzed

GLOBAL_STATS Are the statistics calculated without merging underlying partitions?

USER_STATS Were the statistics entered directly by the user?

STATTYPE_LOCKED type of statistics lock

STALE_STATS Whether statistics for the object is stale or not

NOTES Notes regarding special properties of the stats

SCOPE whether statistics for the object is shared or session

DBA_TAB_STATISTICS

STATISTICS. DOING IT RIGHT, THE EASY WAY

DBA_TAB_STATISTICS

NUM_ROWS The number of rows in the object = relative scale

BLOCKS The number of used blocks in the object = I/O

SAMPLE_SIZE The sample size used in stats gather

LAST_ANALYZED The date of the most recent time this table

 was analyzed

GLOBAL_STATS Are the statistics calculated

 without merging underlying partitions?

USER_STATS Were the stats entered directly by the user?

STATTYPE_LOCKED Locked stats aren't gathered automatically

STALE_STATS %change - DBA_TAB_MODIFICATIONS (FLUSH first!)

NOTES New for 19C

 Notes regarding special properties of the stats

STATISTICS. DOING IT RIGHT, THE EASY WAY

DBA_TAB_COL_STATISTICS

NUM_DISTINCT The number of distinct values in the column

LOW_VALUE The lowest value in the column

HIGH_VALUE The highest value in the column

 Query costs lowered for query outside of these

 values through "statistical decay"

01 Apr (Low) 15 Apr (High)

15 days

DATE
where DATE = 13 Apr
Query COST=150

Query COST outside of
01-15 April reduced
by distance from
high/low range

where DATE = 30 Apr
Query COST=1

where DATE = 25 Apr
Query COST=50

where DATE = 20 Apr
Query COST=100

15 days

30 Apr

15 days

17 Mar

STATISTICS. DOING IT RIGHT, THE EASY WAY

DBA_TAB_COL_STATISTICS

NUM_DISTINCT The number of distinct values in the column

LOW_VALUE The lowest value in the column

HIGH_VALUE The highest value in the column

 Query costs lowered for query outside of these

 values

DENSITY 1/NUM_DISTINCT = % of table retrieved for

 any specific value (ignored if you have histogram)

NUM_NULLS The number of nulls in the column

SAMPLE_SIZE The sample size used in analyzing this column

HISTOGRAM What type of histogram on the column

NUM_BUCKETS The number of buckets in histogram for the column

STATISTICS. DOING IT RIGHT, THE EASY WAY

DBA_IND_STATISTICS

NUM_ROWS The number of rows in the index = SCALE

LEAF_BLOCKS The number of leaf blocks in the index = I/O

DISTINCT_KEYS Derive % of index to be used (NUM_ROWS/DISTINCT_KEYS)

AVG_LEAF_BLOCKS_PER_KEY Effectively LEAF_BLOCKS/DISTINCT_KEYS

AVG_DATA_BLOCKS_PER_KEY Effectively CLUSTERING_FACTOR/DISTINCT_KEYS

CLUSTERING_FACTOR How aligned is the index to the table? Can we

 re-read the same table block for the next index

 value? [If "NO" Increment the CF]

STATISTICS. DOING IT RIGHT, THE EASY WAY

DBA_IND_STATISTICS

CLUSTERING FACTOR:

INDEX BLOCK 1:
row1
row2
row3
row4
row5

TABLE BLOCK 1:
row1
row2
row3
row4

CLUSTERING_FACTOR: 2

TABLE BLOCK 2:
row5

New Block -
increment CF

INDEX BLOCK 1:
row1
row2
row3
row4
row5

TABLE BLOCK 1:
row1
row3
row5

CLUSTERING_FACTOR: 5

TABLE BLOCK 2:
row2
row4

"New" Block -
increment CF

STATISTICS. DOING IT RIGHT, THE EASY WAY

DBA_IND_STATISTICS

NUM_ROWS The number of rows in the index = SCALE

LEAF_BLOCKS The number of leaf blocks in the index = I/O

DISTINCT_KEYS Derive % of index to be used (NUM_ROWS/DISTINCT_KEYS)

AVG_LEAF_BLOCKS_PER_KEY Effectively LEAF_BLOCKS/DISTINCT_KEYS

AVG_DATA_BLOCKS_PER_KEY Effectively CLUSTERING_FACTOR/DISTINCT_KEYS

CLUSTERING_FACTOR How aligned is the index to the table? Can we

 re-read the table block for the next index value?

 If CF is close to #table-blocks=good index

 If CF is close to #table-rows =no-so-good index

 Can only be changed by reorganizing and

 reordering the table

 Default is too pessimistic - set TBC to 16!

From 12.1 (or patched 11.1/11.2 PatchID is 15830250)

TABLE_CACHED_BLOCKS stats gather option makes this number more realistic

STATISTICS. DOING IT RIGHT, THE EASY WAY

DBA_TAB_HISTOGRAMS

ENDPOINT_NUMBER How many values since the last endpoint?

ENDPOINT_ACTUAL_VALUE The data value in the table

ENDPOINT_REPEAT_COUNT For Hybrid Histograms - tells you how many

 values there are for the entry, making the

 it more like a Frequency Histogram for entries

 captured in the statistics.

STATISTICS. DOING IT RIGHT, THE EASY WAY

DBA_TAB_HISTOGRAMS

DBA_TAB_COLUMNS

Table Column Histogram #Buckets Low_Val High_Val Decode_Low Decode_High

SALES CHANNEL_ID NONE 1 C103 C10A 2 9

HISTOGRAM: NONE!

COLUMN ENDPOINT_NUMBER ENDPOINT_VALUE

CHANNEL_ID 0 2

CHANNEL_ID 1 9

STATISTICS. DOING IT RIGHT, THE EASY WAY

DBA_TAB_HISTOGRAMS

DBA_TAB_COLUMNS

Table Column Histogram #Buckets Low_Val High_Val Decode_Low Decode_High

SALES CHANNEL_ID NONE 1 C103 C10A 2 9

SALES PROMO_ID FREQUENCY 4 C122 C20A64 33 999

HISTOGRAM: FREQUENCY

COLUMN ENDPOINT_NUMBER VALUE Maths

 0

PROMO_ID 2074 33 2074- 0 = 2074 x 33

PROMO_ID 20096 350 20096- 2074 = 18022 x 350

PROMO_ID 31006 351 31006-20096 = 10910 x 351

PROMO_ID 918843 999 918843-31006 = 887837 x 999

 1% - index?

96% - FTS

STATISTICS. DOING IT RIGHT, THE EASY WAY

DBA_TAB_HISTOGRAMS

DBA_TAB_COLUMNS

Table Column Histogram #Buckets Low_Val High_Val Decode_Low Decode_High

SALES CHANNEL_ID NONE 1 C103 C10A 2 9

SALES PROMO_ID FREQUENCY 4 C122 C20A64 33 999

SALES AMOUNT_SOLD HYBRID 254 C10729 C2125349 6.4 1782.72

HISTOGRAM: HYBRID

COLUMN ENDP_# VALUE ENDPOINT_REPEAT_COUNT Maths

AMOUNT_SOLD 1 6.40 9 1- 0= 9 x 6.40

AMOUNT_SOLD 33 7.10 19 33- 1=32 19 x 7.10

AMOUNT_SOLD 56 7.31 4 56-33=23 4 x 7.31

AMOUNT_SOLD 78 7.44 3 78-56=22 3 x 7.44

…etc…

scale up by
num_rows/sample_size

to get approx count

STATISTICS. DOING IT RIGHT, THE EASY WAY

Oracle "Internal" Statistics

Dictionary Stats

Oracle 12+ gathers dictionary stats
automatically

• Gather them yourself when your schemas are in

place
• Re-gather if you make significant change
• Re-gather before an upgrade
• Re-gather after an upgrade

exec DBMS_STATS.GATHER_DICTIONARY_STATS;

STATISTICS. DOING IT RIGHT, THE EASY WAY

Oracle "Internal" Statistics

Fixed Object Stats (X$ tables)

Oracle 12+ gathers missing stats automatically
at the end of the maintenance window (if
there's time)

• Gather them yourself during a representative

workload
• Re-gather if you make changes to instance

structure, such as SGA size, or workload changes

exec DBMS_STATS.DELETE_FIXED_OBJECT_STATS;
exec DBMS_STATS.GATHER_FIXED_OBJECTS_STATS;

SELECT *

FROM dba_tab_statistics

WHERE object_type = 'FIXED TABLE'

STATISTICS. DOING IT RIGHT, THE EASY WAY

Oracle "Internal" Statistics

System Statistics

Measures your CPU and storage capabilities

Should we be gathering systems statistics?

(other opinions are available)

unless you are using a dedicated Exadata for true Data Warehouse loads

STATISTICS. DOING IT RIGHT, THE EASY WAY

The Gathering

STATISTICS. DOING IT RIGHT, THE EASY WAY

Automatic Statistics Gathering

DBA_AUTOTASK_CLIENT : auto optimizer stats collection

Gathers for every object that is STALE - DEFAULT 10% changed

And it runs: DBA_AUTOTASK_SCHEDULE

Window Start Time Duration Allowed

MONDAY_WINDOW 22.00.00 +00 04:00:00.000000

TUESDAY_WINDOW 22.00.00 +00 04:00:00.000000

WEDNESDAY_WINDOW 22.00.00 +00 04:00:00.000000

THURSDAY_WINDOW 22.00.00 +00 04:00:00.000000

FRIDAY_WINDOW 22.00.00 +00 04:00:00.000000

SATURDAY_WINDOW 06.00.00 +00 20:00:00.000000

SUNDAY_WINDOW 06.00.00 +00 20:00:00.000000

STATISTICS. DOING IT RIGHT, THE EASY WAY

BATCH CODE in 12.2 database (written long ago in Oracle 10G):
19:00 load data
20:00 dbms_stats.gather_table_stats(USER,'TABLE_X',ESTIMATE_PERCENT=>10,…)
21:00 perform data manipulation with lovely new stats
22:00 Autotask job does the gather again (stale dependent), with different (default) options
04:00 A manual job starts and gathers the stats again.
 They had disabled the Autotask job… an upgrade re-enabled it.

Key Questions
1. How do we ensure it's always the same gather?
2. How do we avoid repeating work?
3. Do I have to re-write all of my batch?

STATISTICS. DOING IT RIGHT, THE EASY WAY

BATCH CODE in 12.2 database (written long ago in Oracle 10G):
19:00 load data
20:00 dbms_stats.gather_table_stats(USER,'TABLE_X',ESTIMATE_PERCENT=>10,…)
21:00 perform data manipulation with lovely new stats
22:00 Autotask job does the gather again (stale dependent), with different (default) options
04:00 A manual job starts and gathers the stats again.

1. How do we ensure it's always the same gather?
Don't specify options on the command line: use TABLE PREFS

DBMS_STATS.SET_TABLE_PREFS

(user,'TABLE_X',

'ESTIMATE_PERCENT',DBMS_STATS.AUTO_SAMPLE_SIZE)

STATISTICS. DOING IT RIGHT, THE EASY WAY

BATCH CODE in 12.2 database (written long ago in Oracle 10G):
19:00 load data
20:00 dbms_stats.gather_table_stats(USER,'TABLE_X',ESTIMATE_PERCENT=>10,…)
21:00 perform data manipulation with lovely new stats
22:00 Autotask job does the gather again (stale dependent), with different (default) options
04:00 A manual job starts and gathers the stats again.

2. How do we avoid repeating work?
Adjust Windows? DBMS_SCHEDULER.set_attribute

Disable Autotask & start it yourself? DBMS_AUTO_TASK_IMMEDIATE.GATHER_OPTIMIZER_STATS

Maybe adjust the STALE percent for that table?
DBMS_STATS.SET_TABLE_PREFS

(user,'TABLE_X', 'STALE_PERCENT','50')

STATISTICS. DOING IT RIGHT, THE EASY WAY

BATCH CODE in 12.2 database (written long ago in Oracle 10G):
19:00 load data
20:00 dbms_stats.gather_table_stats(USER,'TABLE_X',ESTIMATE_PERCENT=>10,…)
21:00 perform data manipulation with lovely new stats
22:00 Autotask job does the gather again (stale dependent), with different (default) options
04:00 A manual job starts and gathers the stats again.

3. Do I have to re-write lots of my code?
From 12.2 we can OVERRIDE command-line options, forcing the stats
gather to use TABLE PREFS

DBMS_STATS.SET_TABLE_PREFS

(user,'TABLE_X', 'PREFERENCE_OVERRIDES_PARAMETER','TRUE')

STATISTICS. DOING IT RIGHT, THE EASY WAY

SELECT * FROM DBA_TAB_STAT_PREFS

TABLE PREFERENCE_NAME PREFERENCE_VALUE

CUSTOMERS METHOD_OPT FOR ALL COLUMNS SIZE 1

 FOR COLUMNS SIZE 1000 COUNTRY_ID,CUST_ID

 FOR COLUMNS SIZE AUTO CUST_GENDER

SALES ESTIMATE_PERCENT .000000

SALES PREFERENCE_OVERRIDES_PARAMETER TRUE

STATISTICS. DOING IT RIGHT, THE EASY WAY

You can also set preferences at a GLOBAL level:

exec DBMS_STATS.SET_GLOBAL_PREFS('METHOD_OPT','FOR ALL COLUMNS SIZE 1');

GLOBAL_PREFS in 19C (12 prefs in 11G, 14 new in 12C/18C/19C)

select dbms_stats.get_prefs('CASCADE') from dual;

select dbms_stats.get_prefs('DEGREE') from dual;

select dbms_stats.get_prefs('ESTIMATE_PERCENT') from dual;

select dbms_stats.get_prefs('METHOD_OPT') from dual;

select dbms_stats.get_prefs('NO_INVALIDATE') from dual;

select dbms_stats.get_prefs('GRANULARITY') from dual;

select dbms_stats.get_prefs('PUBLISH') from dual;

select dbms_stats.get_prefs('INCREMENTAL') from dual;

select dbms_stats.get_prefs('INCREMENTAL_LEVEL') from dual;

select dbms_stats.get_prefs('STALE_PERCENT') from dual;

select dbms_stats.get_prefs('AUTOSTATS_TARGET') from dual;

select dbms_stats.get_prefs('CONCURRENT') from dual;

select dbms_stats.get_prefs('INCREMENTAL_STALENESS') from dual;

select dbms_stats.get_prefs('GLOBAL_TEMP_TABLE_STATS') from dual;

select dbms_stats.get_prefs('TABLE_CACHED_BLOCKS') from dual;

select dbms_stats.get_prefs('OPTIONS') from dual;

select dbms_stats.get_prefs('STAT_CATEGORY') from dual;

select dbms_stats.get_prefs('PREFERENCE_OVERRIDES_PARAMETER') from dual;

select dbms_stats.get_prefs('APPROXIMATE_NDV_ALGORITHM') from dual;

select dbms_stats.get_prefs('AUTO_STAT_EXTENSIONS') from dual;

select dbms_stats.get_prefs('WAIT_TIME_TO_UPDATE_STATS') from dual;

select dbms_stats.get_prefs('ROOT_TRIGGER_PDB') from dual;

select dbms_stats.get_prefs('COORDINATOR_TRIGGER_SHARD') from dual;

select dbms_stats.get_prefs('AUTO_TASK_STATUS') from dual;

select dbms_stats.get_prefs('AUTO_TASK_MAX_RUN_TIME') from dual;

select dbms_stats.get_prefs('AUTO_TASK_INTERVAL') from dual;

STATISTICS. DOING IT RIGHT, THE EASY WAY

DBA_AUTOTASK_JOB_HISTORY

JOB_STATUS: STOPPED

JOB_INFO : REASON="Stop job called because associated

 window was closed"

Options: Make the window bigger or speed it up!

STATISTICS. DOING IT RIGHT, THE EASY WAY

Speed It Up!!!
Parallelise the stats gather for a large table!

DBMS_STATS.SET_TABLE_PREFS

 ('SCHEMA', 'TABLE_X', 'DEGREE', 4)

Go insane and let Oracle parallelise all of it!

DBMS_STATS.SET_GLOBAL_PREFS

 ('DEGREE', DBMS_STATS.AUTO_DEGREE)

STATISTICS. DOING IT RIGHT, THE EASY WAY

Speed It Up!!!
Gather Statistics Concurrently - several tables at the same time…

DBMS_STATS.SET_GLOBAL_PREFS('CONCURRENT','AUTOMATIC')

MANUAL: Enabled only for manual statistics gathering
AUTOMATIC: Enabled only for the auto statistics gathering
ALL: Enabled for all statistics gathering calls
OFF: Concurrency is disabled (default)

Starts many Scheduler Jobs simultaneously!

Also need the following privileges:
CREATE JOB, MANAGE SCHEDULER, MANAGE ANY QUEUE

STATISTICS. DOING IT RIGHT, THE EASY WAY

Speed It Up!!!

Parallel or Concurrent (or both) gathering of stats means you should use
Resource Manager to limit the total resources consumed

DBA_RSRC_CONSUMER_GROUPS: ORA$AUTOTASK

If you are doing ANY
PARALLEL processing
you really should use

Resource Manager
to control it!

STATISTICS. DOING IT RIGHT, THE EASY WAY

Resource Manager

select … from DBA_RSRC_PLAN_DIRECTIVES
where plan = 'DEFAULT_MAINTENANCE_PLAN';

GROUP_OR_SUBPLAN MGMT_P1 PARALLEL_DEGREE_LIMIT_P1 MAX_U

ORA$AUTOTASK 10 4 50

OTHER_GROUPS 20

SYS_GROUP 70

begin

 dbms_resource_manager.clear_pending_area();

 dbms_resource_manager.create_pending_area();

 dbms_resource_manager.update_plan_directive(

 plan => 'DEFAULT_MAINTENANCE_PLAN',

 group_or_subplan => 'ORA$AUTOTASK',

 new_mgmt_p1 => 10, -- Gets at least 10%

 new_max_utilization_limit => 50, -- Not allowed more than 50% (if the CPU is busy)

 new_parallel_degree_limit_p1 => 4); -- And don't go wild…

 dbms_resource_manager.update_plan_directive(

 plan => 'DEFAULT_MAINTENANCE_PLAN',

 group_or_subplan => 'OTHER_GROUPS',

 new_mgmt_p1 => 20);

 dbms_resource_manager.update_plan_directive(

 plan => 'DEFAULT_MAINTENANCE_PLAN',

 group_or_subplan => 'SYS_GROUP',

 new_mgmt_p1 => 70);

 dbms_resource_manager.validate_pending_area;

 dbms_resource_manager.submit_pending_area;

end;

/

STATISTICS. DOING IT RIGHT, THE EASY WAY

DBMS_STATS.SET_TABLE_STATS

1. Set your stats

2. Lock the stats

3. Bask in the

 glow of

 consistent

 good plans?

REAL WORLD
The client had an unusual "small" database which was only
accessed via IOT's (i.e. no humans with unexpected inputs)

Got some good stats via calculations + (some) experiments
It was an unusual DB though. We also:
- disabled Hash Joins (NL was King here)
- NOARCHIVELOG mode
- Did NO backups

Locked it. Left it. Never gathered another statistic.

STATISTICS. DOING IT RIGHT, THE EASY WAY

DBMS_STATS.SET_TABLE_STATS

This is actual code from a client. Did you set everything you need to set?

 DBMS_STATS.SET_TABLE_STATS (

 ownname => 'SCHEMA',

 tabname => 'BIG_PART_TAB',

 numrows => l_numrows,

 numblks => l_num_blocks,

 avgrlen => l_avgrow_len,

 no_invalidate => TRUE,

 force => gather_force

);

The input values for this are calculated from the (gathered) partitions.

REAL WORLD EXAMPLE#2

STATISTICS. DOING IT RIGHT, THE EASY WAY

DBMS_STATS.SET_TABLE_STATS REAL WORLD EXAMPLE#2

 NUM_ROWS BLOCKS AVG_ROW_LEN SAMPLE_SIZE LAST_ANALYZED GLOBAL_STATS USER_STATS

2,117,195,310 12,354,980 68 587,940,830 (recently) YES YES

COLUMN_NAME NUM_DISTINCT LOW_VALUE HIGH_VALUE LAST_ANALYZED USER_STATS

UNIQUEish COLUMN 696,480 10,002,011 919,120,110 (a few years ago) NO

DBA_TAB_STATISTICS

DBA_TAB_COL_STATISTICS

COLUMN_NAME NUM_DISTINCT LOW_VALUE HIGH_VALUE LAST_ANALYZED USER_STATS

UNIQUEish COLUMN 256,150 10,002,011 4,620,540,110 (recently) NO

DBA_PART_COL_STATISTICS

Risk!
Did you set

everything you
need to set?

Did the bits you
missed matter?

STATISTICS. DOING IT RIGHT, THE EASY WAY

Statistical (formerly Cardinality) Feedback

SQL Executes

SQL_PLAN_DIRECTIVE

STATISTICS. DOING IT RIGHT, THE EASY WAY

You run some SQL, it may identify different statistical values:

The STATISTICS COLLECTOR results can be seen in: V$SQL_PLAN_STATISTICS_ALL

OPERATION OPTIONS O-NAME O-TYPE CARDINALITY OUTPUT_ROWS

SELECT STATEMENT 2550

HASH JOIN 25 2550

NESTED LOOPS 25 5050

NESTED LOOPS 25 5050

STATISTICS COLLECTOR 5050

TABLE ACCESS FULL TAB2 TABLE 25 5050

INDEX UNIQUE SCAN TAB3_PK INDEX (UNIQUE) 1 0

TABLE ACCESS BY INDEX ROWID TAB3 TABLE 1 0

TABLE ACCESS FULL TAB3 TABLE 1 7500

These statistics are only held in the SGA and will age out…

Statistical (formerly Cardinality) Feedback

STATISTICS. DOING IT RIGHT, THE EASY WAY

Dynamic Statistics (Sampling) - optimizer_dynamic_sampling

Level When does it use Dynamic Stats?

0 off

1 if No stats on an unpartitioned table, and no indexes, and table is bigger than 32 blocks (samples 32 blocks)

2 (default) if you have no stats on 1 table in the join or (and this is badly documented) if you use PARALLEL (samples 64 blocks)

3 (as 2) + if you have a complex predicate expression [e.g WHERE SUBSTR(column,1,3) =]

4 (as 3) + an OR or AND between multiple predicates on the same table

5-10 (as 4) but sample 128/256/512/1024/4096/ALL table blocks

11 Automatically Determined by Oracle

If you have a 10,000,000,000 row table, how representative is a 4096 block sample?
If you are looking for consistent plans (i.e. consistent stats for OLTP), should you use this?

STATISTICS. DOING IT RIGHT, THE EASY WAY

Dynamic Statistics (Sampling) - optimizer_dynamic_sampling

In the Notes section of DBMS_XPLAN execution plan output it will show the level used:

Note

 - dynamic statistics used: dynamic sampling (level=7) or
 - dynamic statistics used for this statement (level=4)

The level will vary depending upon data size if using PARALLEL query from level 2.

In V$SQL.SQL_TEXT you will see the dynamic sampling which is being executed:

Where your stats aren't good enough or are missing:
SELECT /* OPT_DYN_SAMP */ … SAMPLE BLOCK (0.51390, 8) SEED(1) "TABLE_X"

Where Dynamic Sampling/SQL Plan Directive has kicked in:
SELECT /* DS_SVC */ … SAMPLE BLOCK (0.51398, 8) SEED(1) "TABLE_X"

STATISTICS. DOING IT RIGHT, THE EASY WAY

Adaptive Statistics

12.1 Introduced and Enabled this by default
12.2 Retained the functionality but Disabled this feature by default
 optimizer_adaptive_statistics=FALSE

What it does?
• Identify one or more COLUMNS with poor statistics (via Statistical Feedback)
• Create a SQL_PLAN_DIRECTIVE to perform Dynamic Sampling against those table column(s)

(12.2+ also has a SQL_PLAN_DIRECTIVE to store Dynamically Sampled Stats)

To control in 12.1, see
"Recommendations for Adaptive Features in Oracle Database 12c Release 1 (12.1): (Doc ID 2187449.1)"

STATISTICS. DOING IT RIGHT, THE EASY WAY

SQL Plan Directives

SELECT

 dspd.type,

 dspd.reason,

 dspdo.owner,

 dspdo.object_name,

 dspdo.subobject_name,

 dspdo.object_type

FROM

 dba_sql_plan_directives dspd,

 dba_sql_plan_dir_objects dspdo

WHERE

 dspd.directive_id = dspdo.directive_id;

TYPE REASON OBJECT_NAME SUBOBJECT_NAME OBJECT_TYPE

DYNAMIC_SAMPLING SINGLE TABLE CARDINALITY MISESTIMATE CUSTOMERS CUST_CITY COLUMN

DYNAMIC_SAMPLING SINGLE TABLE CARDINALITY MISESTIMATE CUSTOMERS CUST_STATE_PROVINCE COLUMN

DYNAMIC_SAMPLING SINGLE TABLE CARDINALITY MISESTIMATE CUSTOMERS TABLE

DYNAMIC_SAMPLING_RESULT VERIFY CARDINALITY ESTIMATE CUSTOMERS CUST_CITY TABLE

DYNAMIC_SAMPLING:
Instructs the optimizer to get "better" stats, now

DYNAMIC_SAMPLING_RESULT:

(12.2+) Stores the dynamically sampled statistics.
Goes STALE like your normal stats and then you do
another Dynamic Sample.

STATISTICS. DOING IT RIGHT, THE EASY WAY

Statistics Advisor

• Oracle 12.2 comes with a statistics advisor to help you
• It runs nightly (window permitting): AUTO_STATS_ADVISOR_TASK or you can run it yourself

DECLARE

 task_name VARCHAR2(128) := 'stats_advisor_report_task';

 exec_name VARCHAR2(128) := NULL;

 report CLOB := NULL;

BEGIN

 -- create a task

 task_name := dbms_stats.create_advisor_task(task_name);

 -- execute the task

 exec_name := dbms_stats.execute_advisor_task(task_name);

 -- view the task report

 report := dbms_stats.report_advisor_task(task_name);

 dbms_output.put_line(report);

 -- for the Brave or Foolish… implement the recommendation from the task

 --implementation_result := dbms_stats.implement_advisor_task(tname);

END;

STATISTICS. DOING IT RIGHT, THE EASY WAY

Statistics Advisor

• Oracle 12.2 comes with a statistics advisor to help you
• It runs nightly (window permitting): AUTO_STATS_ADVISOR_TASK or you can run it yourself

FINDINGS

Rule Name: UseConcurrent

Rule Description: Use Concurrent preference for Statistics Collection

Finding: The CONCURRENT preference is not used.

Recommendation: Set the CONCURRENT preference.

Example: dbms_stats.set_global_prefs('CONCURRENT', 'ALL');

Rationale: The system's condition satisfies the use of concurrent statistics

 gathering. Using CONCURRENT increases the efficiency of statistics

 gathering.

STATISTICS. DOING IT RIGHT, THE EASY WAY

Statistics Advisor

• Oracle 12.2 comes with a statistics advisor to help you
• It runs nightly (window permitting): AUTO_STATS_ADVISOR_TASK or you can run it yourself

FINDINGS

Rule Name: UseDefaultPreference

Rule Description: Use Default Preference for Stats Collection

Finding: Global preference METHOD_OPT is set to a non-default value

 'FOR ALL COLUMNS SIZE 1'.

Recommendation: Set the value of preference METHOD_OPT to 'FOR ALL COLUMNS SIZE AUTO'.

Example: Setting preference cascade to default value:

 dbms_stats.set_global_prefs('CASCADE', NULL);

Rationale: METHOD_OPT controls the creation of histograms during statistics collection.

 With the default value FOR ALL COLUMNS SIZE AUTO, Oracle determines which

 columns require histograms and the number of buckets to use based on the usage

 of columns in SQL statements and the number of distinct values. The default

 value helps to create the necessary histograms with an adequate number of

 buckets.

STATISTICS. DOING IT RIGHT, THE EASY WAY

Statistics Advisor: V$STATS_ADVISOR_RULES;
ID NAME RULE_TYPE DESCRIPTION

 1 UseAutoJob SYSTEM Use Auto Job for Statistics Collection

 2 CompleteAutoJob SYSTEM Auto Statistics Gather Job should complete successfully

 3 MaintainStatsHistory SYSTEM Maintain Statistics History

 4 UseConcurrent SYSTEM Use Concurrent preference for Statistics Collection

 5 UseDefaultPreference SYSTEM Use Default Preference for Stats Collection

 6 TurnOnSQLPlanDirective SYSTEM SQL Plan Directives should not be disabled

 7 AvoidSetProcedures OPERATION Avoid Set Statistics Procedures

 8 UseDefaultParams OPERATION Use Default Parameters in Statistics Collection Procedures

 9 UseGatherSchemaStats OPERATION Use gather_schema_stats procedure

10 AvoidInefficientStatsOprSeq OPERATION Avoid inefficient statistics operation sequences

11 AvoidUnnecessaryStatsCollection OBJECT Avoid unnecessary statistics collection

12 AvoidStaleStats OBJECT Avoid objects with stale or no statistics

…

23 AvoidAnalyzeTable OBJECT Avoid using analyze table commands for statistics collection

Rules can be filtered to avoid repeatedly reporting against specific settings you have made:
DBMS_STATS.CONFIGURE_ADVISOR_FILTER

Exadata and Cloud ONLY

STATISTICS. DOING IT RIGHT, THE EASY WAY

2 New Statistics Features

• Real-Time Statistics
• High-Frequency Automatic Optimizer Statistics Collection

Real-Time Statistics

STATISTICS. DOING IT RIGHT, THE EASY WAY

• When a DML operation is currently modifying a table, the DB dynamically computes values
for "the most essential statistics." (i.e. the easy ones)
• LOW_VALUE
• HIGH_VALUE
• NUM_ROWS

• Reduces risk from "statistical decay & high-low value threat"
• Does it during the DML into memory buffers and flushes to disk occasionally

(DBMS_STATS.FLUSH_DATABASE_MONITORING_INFO)
• Runs at an approximate 1% sample size to minimise impact to DML
• Check DBA_TAB_STATISTICS.NOTES

 DBA_TAB_COL_STATISTICS.NOTES for value "STATS_ON_CONVENTIONAL_DML"

You still need to do traditional stats gathering!

High-Frequency Automatic Optimizer Statistics Collection

STATISTICS. DOING IT RIGHT, THE EASY WAY

• Gathers "STALE" statistics much more frequently. Doesn't to any of the other autotask stats
gathering stuff (e.g. Internal Stats, Stats Advisor)

• Does not replace AUTOTASK stats gathering

• Will not run during the auto stats gather window

• 3 new GLOBAL_PREFS
• AUTO_TASK_STATUS ('OFF')
• AUTO_TASK_MAX_RUN_TIME (3600 seconds)
• AUTO_TASK_INTERVAL (run every 900 seconds. Min 60 seconds)

• Can see the runs in: DBA_AUTO_STAT_EXECUTIONS where ORIGIN='HIGH_FREQ_AUTO_TASK'

STATISTICS. DOING IT RIGHT, THE EASY WAY

• Incremental Statistics for Partitioned Tables
• Synopses
• Partition Table Strategies using Copy
• Lots on Histograms
• Statistics History & Rolling Back Stats to previous versions
• Pending Statistics to test plans before you unleash them
• Undocumented Parameters
• and lots of other stuff…

STATISTICS. DOING IT RIGHT, THE EASY WAY

Important Quotes by Performance Experts

"You don't necessarily need up to date statistics.
You need statistics that are representative of your data." - Graham Wood

"Do you want the optimizer to give you? The best performance,
or consistent performance?" - Anjo Kolk

"You need to ensure that your stats tell Oracle what you want it to
think your data looks like" - Jonathan Lewis

STATISTICS. DOING IT RIGHT, THE EASY WAY

Time to use The Force

BLOG: http://chandlerdba.com
Twitter: @chandlerDBA

E: neil@chandler.uk.com

