
oracle.com/gbtour

New Free Tier Always Free

Oracle Cloud Infrastructure

Services you can use for unlimited time

30-Day Free Trial
Free credits you can use for more services

+

http://oracle.com/gbtour

2

How to Find Patterns in Your
Data With SQL

Chris Saxon, @ChrisRSaxon & @SQLDaily

blogs.oracle.com/sql

youtube.com/c/TheMagicofSQL

asktom.oracle.com

https://twitter.com/chrisrsaxon
https://twitter.com/sqldaily
https://blogs.oracle.com/sql
https://www.youtube.com/c/TheMagicofSQL
https://asktom.oracle.com/

Am I Improving?

Can Beat My PB?

Am I Training
Regularly?

4

How to Find Patterns in Your
Data With SQL

Chris Saxon, @ChrisRSaxon & @SQLDaily

blogs.oracle.com/sql

youtube.com/c/TheMagicofSQL

asktom.oracle.com

https://twitter.com/chrisrsaxon
https://twitter.com/sqldaily
https://blogs.oracle.com/sql
https://www.youtube.com/c/TheMagicofSQL
https://asktom.oracle.com/

The following is intended to outline our general product direction. It is intended for information purposes
only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code,
or functionality, and should not be relied upon in making purchasing decisions. The development,
release, timing, and pricing of any features or functionality described for Oracle’s products may change
and remains at the sole discretion of Oracle Corporation.

Statements in this presentation relating to Oracle’s future plans, expectations, beliefs, intentions and
prospects are “forward-looking statements” and are subject to material risks and uncertainties. A detailed
discussion of these factors and other risks that affect our business is contained in Oracle’s Securities and
Exchange Commission (SEC) filings, including our most recent reports on Form 10-K and Form 10-Q
under the heading “Risk Factors.” These filings are available on the SEC’s website or on Oracle’s website
at http://www.oracle.com/investor. All information in this presentation is current as of September 2019
and Oracle undertakes no duty to update any statement in light of new information or future events.

Safe Harbor

http://www.oracle.com/investor

This presentation contains <regular expressions>!

I thought
this was

about SQL!

blogs.oracle.com/sql www.youtube.com/c/TheMagicOfSQL @ChrisRSaxon

Ryan McGuire / Gratisography

http://www.gratisography.com/

* => zero or more matches

+ => one or more matches

{n,m} => N through M matches
(either optional)

Regular Expressions: Say What?

Alex Nuijten

Next session!

Am I running
every day?

Ryan McGuire / Gratisography

http://www.gratisography.com/

RUN_DATE TIME_IN_S DISTANCE_IN_KM

01 Jan 2018 310 1

02 Jan 2018 1,600 5

03 Jan 2018 3,580 11

06 Jan 2018 1,550 5

07 Jan 2018 300 1

10 Jan 2018 280 1

13 Jan 2018 1,530 5

14 Jan 2018 295 1

15 Jan 2018 292 1

RUN_DATE TIME_IN_S DISTANCE_IN_KM

01 Jan 2018 310 1

02 Jan 2018 1,600 5

03 Jan 2018 3,580 11

06 Jan 2018 1,550 5

07 Jan 2018 300 1

10 Jan 2018 280 1

13 Jan 2018 1,530 5

14 Jan 2018 295 1

15 Jan 2018 292 1

#1

#3

#2

#4

How I know if rows are consecutive?

current value = previous value + 1

lag (run_date) over

(order by run_date)

Get the previous row's date

RUN_DATE RN TIME_IN_S DISTANCE_IN_KM

01 Jan 2018 1 310 1

02 Jan 2018 2 1,600 5

03 Jan 2018 3 3,580 11

06 Jan 2018 4 1,550 5

07 Jan 2018 5 300 1

10 Jan 2018 6 280 1

13 Jan 2018 7 1,530 5

14 Jan 2018 8 295 1

15 Jan 2018 9 292 1

consecutive
=>

constant gap

RUN_DATE RN TIME_IN_S DISTANCE_IN_KM

01 Jan 2018 1 310 1

02 Jan 2018 2 1,600 5

03 Jan 2018 3 3,580 11

06 Jan 2018 4 1,550 5

07 Jan 2018 5 300 1

10 Jan 2018 6 280 1

13 Jan 2018 7 1,530 5

14 Jan 2018 8 295 1

15 Jan 2018 9 292 1

-
-
-

-
-
-

-
-

-

RUN_DATE RN RUN_DATE - RN TIME_IN_S DISTANCE_IN_KM

01 Jan 2018 1 31 Dec 2017 310 1

02 Jan 2018 2 31 Dec 2017 1,600 5

03 Jan 2018 3 31 Dec 2017 3,580 11

06 Jan 2018 4 02 Jan 2018 1,550 5

07 Jan 2018 5 02 Jan 2018 300 1

10 Jan 2018 6 04 Jan 2018 280 1

13 Jan 2018 7 06 Jan 2018 1,530 5

14 Jan 2018 8 06 Jan 2018 295 1

15 Jan 2018 9 06 Jan 2018 292 1

-
-
-

-
-
-

-
-

-

RUN_DATE RN RUN_DATE - RN TIME_IN_S DISTANCE_IN_KM

01 Jan 2018 1 31 Dec 2017 310 1

02 Jan 2018 2 31 Dec 2017 1,600 5

03 Jan 2018 3 31 Dec 2017 3,580 11

06 Jan 2018 4 02 Jan 2018 1,550 5

07 Jan 2018 5 02 Jan 2018 300 1

10 Jan 2018 6 04 Jan 2018 280 1

13 Jan 2018 7 06 Jan 2018 1,530 5

14 Jan 2018 8 06 Jan 2018 295 1

15 Jan 2018 9 06 Jan 2018 292 1

-
-
-

-
-
-

-
-

-

Tabibitosan Method

row_number ()

over (order by run_date)

run_date -

row_number ()

over (order by run_date) grp

with grps as (

select run_date ,

run_date -

row_number ()

over (order by run_date) grp

from running_log r

)

select min (run_date), count (*)

from grps

group by grp

12c Pattern Matching

select *

from running_log

match_recognize (

);

inputoutput

RUN_DATE TIME_IN_S DISTANCE_IN_KM

01 Jan 2018 310 1

02 Jan 2018 1,600 5

03 Jan 2018 3,580 11

06 Jan 2018 1,550 5

07 Jan 2018 300 1

10 Jan 2018 280 1

13 Jan 2018 1,530 5

14 Jan 2018 295 1

15 Jan 2018 292 1

this = prev + 1

RUN_DATE TIME_IN_S DISTANCE_IN_KM

01 Jan 2018 310 1

02 Jan 2018 1,600 5

03 Jan 2018 3,580 11

06 Jan 2018 1,550 5

07 Jan 2018 300 1

10 Jan 2018 280 1

13 Jan 2018 1,530 5

14 Jan 2018 295 1

15 Jan 2018 292 1

this = prev + 1

this = prev + 3

RUN_DATE TIME_IN_S DISTANCE_IN_KM

01 Jan 2018 310 1

02 Jan 2018 1,600 5

03 Jan 2018 3,580 11

06 Jan 2018 1,550 5

07 Jan 2018 300 1

10 Jan 2018 280 1

13 Jan 2018 1,530 5

14 Jan 2018 295 1

15 Jan 2018 292 1

this = prev + 1

this = prev + 3
this ≠ prev + 1

current value = previous value + 1

define

consecutive as

run_date = prev (run_date) + 1

pattern (init consecutive*)

define

consecutive as

run_date = prev (run_date) + 1

pattern (init consecutive*)

define

consecutive as

run_date = prev (run_date) + 1

Undefined =>
"Always true"

> 0 matches

RUN_DATE VARIABLE TIME_IN_S DISTANCE_IN_KM

01 Jan 2018 INIT 310 1

02 Jan 2018 CONSECUTIVE 1,600 5

03 Jan 2018 CONSECUTIVE 3,580 11

06 Jan 2018 INIT 1,550 5

07 Jan 2018 CONSECUTIVE 300 1

10 Jan 2018 INIT 280 1

13 Jan 2018 INIT 1,530 5

14 Jan 2018 CONSECUTIVE 295 1

15 Jan 2018 CONSECUTIVE 292 1

pattern (init consecutive*)

define

consecutive as

run_date = prev (run_date) + 1

Which row is prev?!

order by run_date

pattern (init consecutive*)

define

consecutive as

run_date = prev (run_date) + 1

match_recognize (

order by run_date

measures

first (run_date) as start_date,

count (*) as days

pattern (init consecutive*)

define

consecutive as

run_date = prev (run_date) + 1

);

How many consecutive rows?

First row in group

START_DATE DAYS

01 Jan 2018 3

06 Jan 2018 2

10 Jan 2018 1

13 Jan 2018 3

So which is
better?

Pixabay

pattern
matching

12c8i*

~speed

https://pixabay.com/en/runners-race-competition-female-888021/

Am I running >= 3
times/week?

Pixabay

https://pixabay.com/photos/running-runner-long-distance-573762/

RUN_DATE TIME_IN_S DISTANCE_IN_KM

01 Jan 2018 310 1

02 Jan 2018 1,600 5

03 Jan 2018 3,580 11

06 Jan 2018 1,550 5

07 Jan 2018 300 1

10 Jan 2018 280 1

13 Jan 2018 1,530 5

14 Jan 2018 295 1

15 Jan 2018 292 1

#1

#3

#2

How I know if runs are
in the same week?

latest Monday = prev latest Monday

trunc (run_date , 'iw')

Return the start of the ISO
week…

…Monday!

RUN_DATE TRUNC(RUN_DATE, 'IW') TIME_IN_S DISTANCE_IN_KM

01 Jan 2018 01 Jan 2018 310 1

02 Jan 2018 01 Jan 2018 1,600 5

03 Jan 2018 01 Jan 2018 3,580 11

06 Jan 2018 01 Jan 2018 1,550 5

07 Jan 2018 01 Jan 2018 300 1

10 Jan 2018 08 Jan 2018 280 1

13 Jan 2018 08 Jan 2018 1,530 5

14 Jan 2018 08 Jan 2018 295 1

15 Jan 2018 15 Jan 2018 292 1

select trunc (run_date , 'iw'),

count(*)

from running_log

group by trunc (run_date , 'iw')

select trunc (run_date , 'iw'),

count(*)

from running_log

group by trunc (run_date , 'iw')

having count (*) >= 3

12c Pattern Matching

latest Monday = prev latest Monday

define

same_week as

trunc (run_date, 'iw') =

prev (trunc (run_date, 'iw'))

pattern (init same_week*)

define

same_week as

trunc (run_date, 'iw') =

prev (trunc (run_date, 'iw'))

pattern (init same_week {2, })

define

same_week as

trunc (run_date, 'iw') =

prev (trunc (run_date, 'iw'))

Two or more matches

match_recognize (

order by run_date

measures

first (run_date) as start_date,

count (*) as days

pattern (init same_week {2, })

define

same_week as

trunc (run_date, 'iw') =

prev (trunc (run_date, 'iw'))

);

START_DATE DAYS

01 Jan 2018 5

08 Jan 2018 3

match_recognize (

order by run_date

measures

first (run_date) as start_date,

count (*) as days

pattern (init same_week {2, })

define

same_week as

trunc (run_date, 'iw') =

prev (trunc (run_date, 'iw'))

);

match_recognize (

order by run_date

measures

first (run_date) as start_date,

count (*) as days

pattern (init consecutive*)

define

consecutive as

run_date = prev (run_date) + 1

);

blogs.oracle.com/sql www.youtube.com/c/TheMagicOfSQL @ChrisRSaxon

Am I running >= 3
times in 7 days?

Pixabay

https://pixabay.com/photos/running-man-glass-floor-reflection-1149787/

blogs.oracle.com/sql www.youtube.com/c/TheMagicOfSQL @ChrisRSaxon

RUN_DATE TIME_IN_S DISTANCE_IN_KM

01 Jan 2018 310 1

02 Jan 2018 1,600 5

03 Jan 2018 3,580 11

06 Jan 2018 1,550 5

07 Jan 2018 300 1

10 Jan 2018 280 1

13 Jan 2018 1,530 5

14 Jan 2018 295 1

15 Jan 2018 292 1

RUN_DATE TIME_IN_S DISTANCE_IN_KM

01 Jan 2018 310 1

02 Jan 2018 1,600 5

03 Jan 2018 3,580 11

06 Jan 2018 1,550 5

07 Jan 2018 300 1

10 Jan 2018 280 1

13 Jan 2018 1,530 5

14 Jan 2018 295 1

15 Jan 2018 292 1

#1

#2

RUN_DATE TIME_IN_S DISTANCE_IN_KM

01 Jan 2018 01 – 07 Jan 2018 310 1

02 Jan 2018 1,600 5

03 Jan 2018 3,580 11

06 Jan 2018 1,550 5

07 Jan 2018 300 1

10 Jan 2018 08 – 14 Jan 2018 280 1

13 Jan 2018 1,530 5

14 Jan 2018 295 1

15 Jan 2018 15 – 21 Jan 2018 292 1

RUN_DATE TIME_IN_S DISTANCE_IN_KM

01 Jan 2018 01 – 07 Jan 2018 310 1

02 Jan 2018 1,600 5

03 Jan 2018 3,580 11

06 Jan 2018 1,550 5

07 Jan 2018 300 1

10 Jan 2018 10 – 16 Jan 2018 280 1

13 Jan 2018 1,530 5

14 Jan 2018 295 1

15 Jan 2018 292 1

current day < first day + 7

11.2 Recursive With

with rws as (

select r.*, row_number() over (order by run_date) rn

from running_log r

), within_7 (

run_date, time_in_s, distance_in_km, rn, grp_start

) as (

select run_date, time_in_s, distance_in_km,

rn, run_date grp_start

from rws where rn = 1

union all

select r.run_date, r.time_in_s, r.distance_in_km, r.rn,

case

when r.run_date < w.grp_start + 7 then grp_start

else r.run_date

end grp_start

from within_7 w join rws r on w.rn + 1 = r.rn

)

select grp, w.* from within_7 w

10g Model

select * from running_log

model

dimension by (row_number() over (order by run_date) rn)

measures (run_date, 1 grp, run_date grp_start)

rules (

grp_start[1] = run_date[cv()],

grp_start[any] =

case

when run_date[cv()] < grp_start[cv()-1] + 7 then

grp_start[cv() - 1]

else run_date[cv()]

end ,

grp[any] =

case

when run_date[cv()] < grp_start[cv()-1] + 7 then

grp[cv() - 1]

else nvl(grp[cv() - 1] + 1, 1)

end

);

12c Pattern Matching

current day < first day + 7

define

within7 as

run_date < first (run_date) + 7

pattern (within7 {3, })

define

within7 as

run_date < first (run_date) + 7

match_recognize (

order by run_date

measures

first (run_date) as start_date,

count (*) as days

pattern (within7 {3, })

define

within7 as

run_date < first (run_date) + 7

);

START_DATE DAYS

01 Jan 2018 5

10 Jan 2018 4

Am I getting
faster? stocksnap.io

https://stocksnap.io/photo/62WF0R071V

current time < prev time

define

faster as

time_in_s < prev (time_in_s)

pattern (slower faster*)

define

faster as

time_in_s < prev (time_in_s)

match_recognize (

order by run_date

measures

classifier () as faster

pattern (slower faster*)

define

faster as

time_in_s < prev (time_in_s)

);

FASTER

SLOWER

SLOWER

FASTER

FASTER

match_recognize (

order by run_date

measures

classifier () as faster

one row per match

pattern (slower faster*)

define

faster as

time_in_s < prev (time_in_s)

);

match_recognize (

order by run_date

measures

classifier () as faster

all rows per match

pattern (slower faster*)

define

faster as

time_in_s < prev (time_in_s)

);

RUN_DATE FASTER TIME_IN_S DISTANCE_IN_KM

01 Jan 2018 SLOWER 310 1

02 Jan 2018 SLOWER 1,600 5
03 Jan 2018 SLOWER 3,580 11

06 Jan 2018 FASTER 1,550 5

07 Jan 2018 FASTER 300 1
10 Jan 2018 FASTER 280 1

13 Jan 2018 SLOWER 1,530 5

14 Jan 2018 FASTER 295 1
15 Jan 2018 FASTER 292 1

RUN_DATE FASTER TIME_IN_S DISTANCE_IN_KM

01 Jan 2018 SLOWER 310 1

02 Jan 2018 SLOWER 1,600 5
03 Jan 2018 SLOWER 3,580 11

06 Jan 2018 FASTER 1,550 5

07 Jan 2018 FASTER 300 1
10 Jan 2018 FASTER 280 1

13 Jan 2018 SLOWER 1,530 5

14 Jan 2018 FASTER 295 1
15 Jan 2018 FASTER 292 1

SLOWER!

RUN_DATE TIME_IN_S DISTANCE_IN_KM

01 Jan 2018 310 1
07 Jan 2018 300 1
10 Jan 2018 280 1
14 Jan 2018 295 1
15 Jan 2018 292 1

02 Jan 2018 1,600 5
06 Jan 2018 1,550 5
13 Jan 2018 1,530 5

03 Jan 2018 3,580 11

match_recognize (

partition by distance_in_km

order by run_date

measures

classifier () as faster

all rows per match

pattern (slower faster*)

define

faster as

time_in_s < prev (time_in_s)

);

RUN_DATE FASTER TIME_IN_S DISTANCE_IN_KM

01 Jan 2018 SLOWER 310 1
07 Jan 2018 FASTER 300 1
10 Jan 2018 FASTER 280 1
14 Jan 2018 SLOWER 295 1
15 Jan 2018 FASTER 292 1

02 Jan 2018 SLOWER 1,600 5
06 Jan 2018 FASTER 1,550 5
13 Jan 2018 FASTER 1,530 5

03 Jan 2018 SLOWER 3,580 11

Can I run 10k in
< 50 minutes?

Is my average pace < 300 s/km for
runs with a total distance <= 10 km

cumulative dist <= 10 km

define

ten_k as

sum (distince_in_km) <= 10

Returns the running total

pattern (ten_k+)

define

ten_k as

sum (distince_in_km) <= 10

match_recognize (

order by run_date

measures

first (run_date) as strt ,

round (avg (time_in_s /

distance_in_km), 2) as mean_pace,

sum (distance_in_km) as dist

pattern (ten_k+)

define

ten_k as

sum (distince_in_km) <= 10

);

STRT MEAN_PACE DIST

01 Jan 2018 315.00 6
06 Jan 2018 296.67 7
13 Jan 2018 297.67 7

Where's my 11 km run?

any runs cumulative dist < 10
and

one run cumulative dist >= 10

pattern ()

pattern (under_10k* over_10k)

pattern (under_10k* over_10k)

define

under_10k as

sum (distance_in_km) < 10,

over_10k as

sum (distance_in_km) >= 10

); Includes under_10k values

match_recognize (

order by run_date

measures

first (run_date) as strt ,

round (avg (time_in_s /

distance_in_km), 2) as mean_pace

sum (distance_in_km) as dist

pattern (under_10k* over_10k)

define

under_10k as

sum (distance_in_km) < 10,

over_10k as

sum (distance_in_km) >= 10

);

STRT MEAN_PACE DIST

01 Jan 2018 318.48 17

06 Jan 2018 299.00 12

Hmmm….

match_recognize (

order by run_date

measures

first (run_date) as strt ,

round (avg (time_in_s /

distance_in_km), 2) as mean_pace

sum (distance_in_km) as dist

after match skip past last row

pattern (under_10k* over_10k)

define

under_10k as

sum (distance_in_km) < 10,

over_10k as

sum (distance_in_km) >= 10

);

match_recognize (

order by run_date

measures

first (run_date) as strt ,

round (avg (time_in_s /

distance_in_km), 2) as mean_pace

sum (distance_in_km) as dist

after match skip to next row

pattern (under_10k* over_10k)

define

under_10k as

sum (distance_in_km) < 10,

over_10k as

sum (distance_in_km) >= 10

);

STRT MEAN_PACE DIST

01 Jan 2018 318.48 17

02 Jan 2018 322.73 16

03 Jan 2018 325.45 11

06 Jan 2018 299.00 12

00:48:19

Photo by Doruk Yemenici on Unsplash

https://unsplash.com/photos/crIHkqaDinw?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

What About Query Performance?

MATCH RECOGNIZE SORT

Non-deterministic

MATCH RECOGNIZE SORT

DETERMINISTIC FINITE AUTO

Pixabay

https://pixabay.com/en/color-run-rainbow-run-running-698417/

How often did I run 5 km

Followed by 2+ 1 km runs

Within 7 days?

pattern (five_km one_km {2,})

pattern (five_km one_km {2,})

define

five_km as distance_in_km = 5,

pattern (five_km one_km {2,})

define

five_km as distance_in_km = 5,

one_km as distance_in_km = 1

pattern (five_km one_km {2,})

define

five_km as distance_in_km = 5,

one_km as distance_in_km = 1

and run_date < first (run_date) + 7

match_recognize (

order by run_date

measures

first (run_date) as start_date,

count (*) as total_runs

pattern (five_km one_km {2,})

define

five_km as distance_in_km = 5,

one_km as distance_in_km = 1

and run_date < first (run_date) + 7

);

START_DATE TOTAL_RUNS

06 Jan 2018 3

13 Jan 2018 3

Why would I want to do that?!

Pixabay

https://pixabay.com/en/money-laundering-crime-fighting-1963184/

Row Pattern Matching Use Cases

Fraud Analytics
2+ $1 trx between acts
1 $10,000 trx in 7 days

Stock Market Trends
Price rose 3 days
Then fell 3 days

Customer Retention
2+ orders/month for years
Max 2 orders past 6 mths

Date Ranges
Finding gaps & overlaps

How do
I debug it?

Gratisography

http://www.gratisography.com/

(Regular) [exprsion]+ are easy to
missteak

regex101.comregex101.com

classifier
=> Which variable matched?

classifier
=> Which variable matched?

match_number
=> Which group is this?

classifier
=> Which variable matched?

match_number
=> Which group is this?

all rows per match

classifier
=> Which variable matched?

match_number
=> Which group is this?

all rows per match with unmatched rows
=> Show me everything!

match_recognize (

order by run_date

measures

classifier () as var,

match_number () as grp

all rows per match with unmatched rows

pattern (five_km one_km {2,})

define

five_km as distance_in_km = 5,

one_km as distance_in_km = 1

and run_date < first (run_date) + 7

);

RUN_DATE VAR GRP TIME_IN_S DISTANCE_IN_KM

01 Jan 2018 310 1

02 Jan 2018 1,600 5

03 Jan 2018 3,580 10

06 Jan 2018 FIVE_KM 1 1,550 5

07 Jan 2018 ONE_KM 1 300 1

10 Jan 2018 ONE_KM 1 280 1

13 Jan 2018 FIVE_KM 2 1,530 5

14 Jan 2018 ONE_KM 2 295 1

15 Jan 2018 ONE_KM 2 292 1

RUN_DATE VAR GRP TIME_IN_S DISTANCE_IN_KM

01 Jan 2018 310 1

02 Jan 2018 1,600 5

03 Jan 2018 3,580 10

06 Jan 2018 FIVE_KM 1 1,550 5

07 Jan 2018 ONE_KM 1 300 1

10 Jan 2018 ONE_KM 1 280 1

13 Jan 2018 FIVE_KM 2 1,530 5

14 Jan 2018 ONE_KM 2 295 1

15 Jan 2018 ONE_KM 2 292 1

Wantmore?

Pixabay

https://pixabay.com/en/marathon-runner-fitness-run-1494648/

livesql.oracle.com

iTunes & PDF

FREE!
SQL for Data Warehousing and Analytics

https://oracle-big-data.blogspot.co.uk

Keith Laker
Analytic SQL PM

https://itunes.apple.com/us/book/complete-guide-to-sql-pattern-matching-volume-1/id1302139558?ls=1
https://www.dropbox.com/s/et9qpp59ujioj1h/Complete%20Guide%20to%20SQL%20Pattern%20Matching%20-%20Vol%201.pdf

#MakeDataGreatAgain

oracle-big-data.blogspot.co.uk

Ryan McGuire / Gratisography

http://www.gratisography.com/

