Oracle Cloud Infrastructure

o A

. — . s
Services you can use for unlimited time

oracle.com/gbtour _|_
30-Day Free Tnal

Free credits you can use for more services



http://oracle.com/gbtour

ORACLE

—
———
e ——
—— —
— ===
= —
—— e —— ————
— -
e
—_— e = —
= ——
e
— ——

How to Find Patterns in Your
Data With SQL

Chris Saxon, &



https://twitter.com/chrisrsaxon
https://twitter.com/sqldaily
https://blogs.oracle.com/sql
https://www.youtube.com/c/TheMagicofSQL
https://asktom.oracle.com/

Am | Training
Regularly?
Am | Improvingy |
Ca Be My PB?

,'

HamiltomPark

N




ORACLE

—
———
e ——
—— —
— ===
= —
—— e —— ————
— -
e
—_— e = —
= ——
e
— ——

How to Find Patterns in Your
Data With SQL

Chris Saxon, &



https://twitter.com/chrisrsaxon
https://twitter.com/sqldaily
https://blogs.oracle.com/sql
https://www.youtube.com/c/TheMagicofSQL
https://asktom.oracle.com/

Safe Harbor

The following is intended to outline our general product direction. It is intended for information purposes
only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code,
or functionality, and should not be relied upon in making purchasing decisions. The development,
release, timing, and pricing of any features or functionality described for Oracle’s products may change
and remains at the sole discretion of Oracle Corporation.

Statements in this presentation relating to Oracle’s future plans, expectations, beliefs, intentions and
prospects are “forward-looking statements” and are subject to material risks and uncertainties. A detailed
discussion of these factors and other risks that affect our business is contained in Oracle’s Securities and
Exchange Commission (SEC) filings, including our most recent reports on Form 10-K and Form 10-Q
under the heading “Risk Factors.” These filings are available on the SEC’s website or on Oracle’s website
at http://www.oracle.com/investor. All information in this presentation is current as of September 2019
and Oracle undertakes no duty to update any statement in light of new information or future events.



http://www.oracle.com/investor

This presentation contains <regular expressions>!




| thougnt

tnis was
about SOL



http://www.gratisography.com/




x* => 7ero or more matches

+ => one or more matches

{n,m} => N through M matches
(either optional)




Regular Expressions: Say What?

Alex Nuijten

Next session!






http://www.gratisography.com/

RUN DATE TIME IN S DISTANCE IN KM
01 Jan 2018 310 1
02 Jan 2018 1,600 5
03 Jan 2018 3,580 11
06 Jan 2018 1,550 5
07 Jan 2018 300 1
10 Jan 2018 280 1
13 Jan 2018 1,530 5
14 Jan 2018 295 1

15 Jan 2018 292 1




RUN DATE TIME IN S DISTANCE IN KM
01 Jan 2018 ) 310 1
02 Jan 2018 » #1 1,600 5
03 Jan 2018 | 3,580 11
06 Jan 2018 H 1,550 5
07 Jan 2018 300 1
10 Jan 2018 » #3 280 1
13 Jan 2018° 1,530 5
14 Jan 2018 » #4 295 1
15 Jan 2018 292 1




How | know if rows are consecutive?




current value = previous value + 1




R

lag ( run date ) over
( order by run date )

Get the previous row's date




RUN_DATE RN TIME_IN_S DISTANCE_IN_KM
01 Jan 2018 1 310 1
02 Jan 2018 2 1,600 5
03 Jan 2018 3 3,580 11
06 Jan 2018 \\ consecutive 1,550 5
07 Jan 2018 5 _ 300 1
=>
10 Jan 2018 6 280 1
an constant gap
13 Jan 2018 7 1,530 5
14 Jan 2018 8 295 1

15 Jan 2018 9 292 1




RUN DATE RN TIME IN' S DISTANCE IN KM
01 Jan 2018 - 1 310 1
02 Jan 2018 - 2 1,600 5
03 Jan 2018 - 3 3,580 11
06 Jan 2018 - 4 1,550 5
07 Jan 2018 - 5 300 1
10 Jan 2018 - 6 280 1
13 Jan 2018 - 7 1,530 5
14 Jan 2018 - 8 205 1

15 Jan 2018 -

©

292 1




RUN DATE RN RUN DATE - RN TIME IN S DISTANCE IN KM
01 Jan 2018 1 31 Dec 2017 310 1
02 Jan 2018 2 31 Dec 2017 1,600 5
03 Jan 2018 3 31 Dec 2017 3,580 11
06 Jan 2018 4 02 Jan 2018 1,550 5
07 Jan 2018 5 02 Jan 2018 300 1
10 Jan 2018 6 04 Jan 2018 280 1
13 Jan 2018 V4 06 Jan 2018 1,530 5
14 Jan 2018 8 06 Jan 2018 295 1
15 Jan 2018 9 06 Jan 2018 292 1




RUN DATE RN RUN DATE - RN TIME IN'S DISTANCE IN KM

01 Jan 2018 - 1 31 Dec 2017 310 1
02 Jan 2018 - 2 31 Dec 2017 1,600 5
03 Jan 2018 - 3 31 Dec 2017 3,580 11

06 Jan 2018 - 4 02 Jan 2018 1,550 S}
07Jan 2018 - 5 02 Jan 2018 300

04 Jan 2018 D 280 1

10Jan 2018 - 6

13 Jan 2018 - 7 06 Jan 2018 1,530 5
14 Jan 2018 - 8 06 Jan 2018 295 1
15Jan 2018 - 9 06 Jan 2018 292 1




Tabibitosan Method




row_ number ()
over ( order by run date )




run date -
row_ number ()
over ( order by run date ) grp




with grps as (
select run date ,
run date -
row_ number ()

over ( order by run date ) grp
from running log r

select min ( run date ), count (¥*)
from grps

group by grp




R

12c Pattern Matching




%
running log

S
from
out p ut <1:::h_recogni ze

) ;

(>input




RUN_DATE TIME IN.S DISTANCE IN KM
01 Jan 2018 310 1
02 Jan 2018 < 1,600 5
03 Jan 2018 3,580 11
06 Jahm;\this = prev + 1 1,550 5
07 Jan 2018 300 1
10 Jan 2018 280 1
13 Jan 2018 1,530 5
14 Jan 2018 295 1

15 Jan 2018 292 1




RUN DATE TIME IN. S DISTANCE IN KM
01 Jan 2018 310 1
02 Jan 2018 < 1,600 5
03 Jan 2018 3,580 11
06 Jah}ﬂ\this = prev + 1 1,550 5
07 Jan 2018 300 1
10 Jan 2018 280 1
13 Ja'n\gols\ : 1,530 5
14 1an 2016— th1S = prev + 3 295 1

15 Jan 2018 292 1




RUN DATE TIME IN. S DISTANCE IN KM
01 Jan 2018 310 1
02 Jan 2018 < 1,600 5
03 Jan 2018 3,580 11
06 Jah}ﬂ\this = prev + 1 1,550 5
07 Jan 2018 300 1
10 Jan 2018 280 1
13 Ja'n\gols\ : 1,530 5
14 1an 2016— th1S = prev + 3 295 1

15 Jan 2018 th]S - prev + 1 292 1




current value = previous value + 1




define
consecutive as
run date = prev ( run date ) + 1




pattern ( init consecutive* )
define
consecutive as
run date = prev ( run date ) + 1




Undefined =>

pattern ( init consecutive* )
define
consecutive as
run date = prev ( run date ) + 1




RUN_DATE VARIABLE TIME IN S DISTANCE IN_KM
01 Jan 2018 INIT 310 1
02 Jan 2018 CONSECUTIVE 1,600 S)
03 Jan 2018 CONSECUTIVE 3,580 11
06 Jan 2018 INIT 1,550 5
07 Jan 2018 CONSECUTIVE 300 1
10 Jan 2018 INIT 280 1
13 Jan 2018 INIT 1,530 5
14 Jan 2018 CONSECUTIVE 295 1

15 Jan 2018 CONSECUTIVE 292 1




pattern ( init consecutive* )
define
consecutive as
run date = prev ( run date ) + 1

\Which row 1s prev?!




order by run date

pattern ( init consecutive* )
define
consecutive as
run date = prev ( run date ) + 1




match recognize ( _ _
order by run date First row in group

measures «1Er—17’///
first ( run date ) Start date,

count (*) as days«

pattern ( init consecuti;gw\i\\
define

How many consecutive rows?

consecutive as
run date = prev ( run date ) + 1




START DATE DAYS
01 Jan 2018 3
06 Jan 2018 2
10 Jan 2018 1
13 Jan 2018 3






https://pixabay.com/en/runners-race-competition-female-888021/

Am [ running
I ESYAVEE


https://pixabay.com/photos/running-runner-long-distance-573762/

RUN DATE TIME IN'S DISTANCE IN KM
01 Jan 2018 310 1
02 Jan 2018 1.600 5
03 Jan 2018 » #1 3,580 11
06 Jan 2018 1,550 5
07 Jan 2018, 300 1
10 Jan 2018) 280 1
13 Jan 2018 » H2 1,530 5
14 Jan 2018, 205 1

15 Jan 2018 #3 292 1




R

How | know if runs are
in the same week?




latest Monday = prev latest Monday




trunc ( run date ,

...Monday!

'iwl

Return the start of the ISO/

week...




RUN DATE TRUNC(RUN DATE,'IW) TIME IN S

DISTANCE IN KM

01 Jan 2018
02 Jan 2018
03 Jan 2018

06 Jan 2018
07 Jan 2018

10 Jan 2018

13 Jan 2018
14 Jan 2018

15 Jan 2018

01 Jan 2018
01 Jan 2018
01 Jan 2018

01 Jan 2018
01 Jan 2018

08 Jan 2018

08 Jan 2018
08 Jan 2018

15 Jan 2018

310
1,600
3,580

1,550
300

280

1,530
295

292

1
5
11

S
1

= Ol




select trunc ( run date , 'iw' ),
count (*)

from running log

group by trunc ( run date , 'iw' )




select trunc ( run date , 'iw' ),
count (*)

from running log

group by trunc ( run date , 'iw' )

having count (*) >= 3




R

12c Pattern Matching




latest Monday = prev latest Monday




define
same week as
trunc ( run date, 'iw' ) =
prev ( trunc ( run date, 'iw' ) )




pattern ( i1nit same week* )
define
same week as
trunc ( run date, 'iw' ) =
prev ( trunc ( run date, 'iw' ) )




Two or more matches

pattern ( init same week {2, } )
define
same week as
trunc ( run date, 'iw' ) =
prev ( trunc ( run date, 'iw' ) )




match recognize (
order by run date
measures
first ( run date ) as start date,
count (*) as days
pattern ( init same week {2, } )
define
same week as
trunc ( run date, 'iw' ) =
prev ( trunc ( run date, 'iw' ) )




START DATE DAY S

01 Jan 2018 5
08 Jan 2018 3




match recognize (
order by run date
measures
first ( run date ) as start date,
count (*) as days
pattern ( init same week {2, } )
define
same week as
trunc ( run date, 'iw' ) =
prev ( trunc ( run date, 'iw' ) )




match recognize (
order by run date
measures
first ( run date ) as start date,
count (*) as days
pattern ( init consecutive* )
define
consecutive as
run date = prev ( run date ) + 1




MON TUE WED THU FRI SAT SUN

12 13 14 15 16 17 18
19 20 21 22 23 24 25
DOAG
26 27 28 29 30 1 Dec 2
UKOUG
3 4 5 6 7 8 9
UKOUG Sangam

blogs.oracle.com/sql www.youtube.com/c/TheMagicOfSQL @ChrisRSaxon






https://pixabay.com/photos/running-man-glass-floor-reflection-1149787/

MON TUE WED THU FRI SAT SUN

12 13 14 15 16 17 18

19 20 21 22 23 24 25
DOAG

>
26 27 28 29 30 1 Dec 2
UKOUG
>

3 4 5 6 7 8 9

UKOUG Sangam

blogs.oracle.com/sql www.youtube.com/c/TheMagicOfSQL @ChrisRSaxon




RUN DATE TIME IN S DISTANCE IN KM
01 Jan 2018 310 1
02 Jan 2018 1,600 5
03 Jan 2018 3,580 11
06 Jan 2018 1,550 5
07 Jan 2018 300 1
10 Jan 2018 280 1
13 Jan 2018 1,530 5
14 Jan 2018 295 1
15 Jan 2018 292 1




RUN_DATE TIME_IN_S _ DISTANCE_IN_KM
01 Jan 2018 310 1
02 Jan 2018 1,600 5
03 Jan 2018 \ # 3,580 11
06 Jan 2018 1,550 5
07 Jan 2018 300 1
10 Jan 2018 280 1
13Jan 2018 | 45 1,530 5
14 Jan 2018 295 1
15 Jan 2018 292 1




RUN DATE TIME IN S DISTANCE IN KM
01 Jan 2018 01 -07 Jan 2018 310 1
02 Jan 2018 1,600 5
03 Jan 2018 3,580 11
06 Jan 2018 1,550 5
07 Jan 2018 300 1
10Jan 2018 O 280 1
13 Jan 2018 1,530 5
14 Jan 2018 295 1
15 Jan 2018 15— an 2018 292 1




RUN DATE TIME IN S DISTANCE IN KM
01 Jan 2018 01 -07 Jan 2018 310 1
02 Jan 2018 1,600 5
03 Jan 2018 3,580 11
06 Jan 2018 1,550 5
07 Jan 2018 300 1
10 Jan 2018 10 - 16 Jan 2018 280 1
13 Jan 2018 1,530 5
14 Jan 2018 295 1
15 Jan 2018 292 1




current day < first day + 7




11.2 Recursive With




with rws as (
select r.*, row number() over ( order by run date ) rn
from running log r
), within 7 (
run date, time in s, distance in km, rn, grp start
) as (
select run date, time in s, distance in km,
rn, run date grp start
from rws where rn =1
union all
select r.run date, r.time in s, r.distance in km, r.rn,
case
when r.run date < w.grp start + 7 then grp start
else r.run date
end grp start
from within 7 w join rws r on w.rn + 1 = r.rn

select grp, w.* from within 7 w




10g Model




select * from running log

model
dimension by ( row number () over ( order by run date ) rn )

measures ( run date, 1 grp, run date grp start )
rules (
grp _start[l] = run date[cv()],
grp_start[any] =
case
when run date[cv()] < grp start[cv()-1] + 7 then
grp _start[cv() - 1]
else run date[cv()]
end ,
grplany] =
case
when run date[cv()] < grp start[cv()-1] + 7 then
grplcv() - 1]
else nvl(grp[cv() - 1] + 1, 1)
end

) ;



R

12c Pattern Matching




current day < first day + 7




define
within7 as
run date < first ( run date ) + 7




pattern ( within7 {3, } )
define
within7 as
run date < first ( run date ) + 7




match recognize (
order by run date
measures
first ( run date ) as start date,
count (*) as days
pattern ( within7 {3, } )
define
within7 as
run date < first ( run date ) + 7




START DATE DAY S

01 Jan 2018 5
10 Jan 2018 4






https://stocksnap.io/photo/62WF0R071V

current time < prev time




define
faster as
time in s < prev ( time in s )




pattern ( slower faster* )
define
faster as
time in s < prev ( time in s )




match recognize (
order by run date
measures
classifier () as faster

pattern ( slower faster* )
define
faster as
time in s < prev ( time in s )




FASTER

SLOWER
SLOWER
FASTER
FASTER




match recognize (
order by run date
measures
classifier () as faster

pattern ( slower faster* )
define
faster as
time in s < prev ( time in s )




all rows per match




RUN_DATE  FASTER TIME_IN_S _ DISTANCE_IN_KM
01Jan 2018  SLOWER 310 1
02Jan 2018  SLOWER 1,600 5
03Jan 2018  SLOWER 3,580 11
06 Jan 2018  FASTER

07 Jan 2018 @

10 Jan 2018 FASTEF 280 1
13 Jan 2018 SLOWER 1,530 5
14 Jan 2018 FASTER 295 1
15 Jan 2018 FASTER 292 1




RUN_DATE FASTER TIME_IN_S DISTANCE _IN_KM
01 Jan 2018 SLOWER 310 1
02 Jan 2018 SLOWER 1,600 5
03 Jan 2018 SLOWER 11
10 Jan 2018 FA : 1

13 Jan 2018  SLOWER

580
06 Jan 2018  FASTER
07 Jan 2018 @
?ﬁ SLOWER!
ASTER

14 Jan 2018
15 Jan 2018

= = O




RUN_DATE TIME_IN_S DISTANCE _IN_KM
01 Jan 2018 310 1
07 Jan 2018 300 1
10 Jan 2018 280 1
14 Jan 2018 295 1
15 Jan 2018 292 1
02 Jan 2018 1,600 5
06 Jan 2018 1,550 5
13 Jan 2018 1,530 5

03 Jan 2018 3,580 11




partition by distance in km




RUN_DATE  FASTER TIME_IN_S  DISTANCE_IN_KM
01Jan 2018 SLOWER 310 1
07 Jan 2018  FASTER 300 1
10Jan 2018  FASTER 280 1
14 Jan 2018  SLOWER 295 1
15Jan 2018  FASTER 292 1
02 Jan 2018  SLOWER 1,600 5
06 Jan 2018  FASTER 1,550 5
13 Jan 2018  FASTER 1,530 5

03 Jan 2018  SLOWER 3,580 11




minutes?

]




R

T ——
. ettty
——
— e ———

oorn —mnmennn — ——

_@—

—

Is my average pace < 300 s/km for
runs with a total distance <= 10 km




cumulative dist <=10 km




define
ten_k as
sum ( distince in km ) <= 10

Returns the running total




pattern ( ten k+ )
define
ten k as
sum ( distince in km ) <= 10




match recognize (
order by run date
measures
first ( run date ) as strt ,
round ( avg ( time in s /
distance in km ), 2 ) as mean pace,
sum ( distance in km ) as dist

pattern ( ten k+ )
define
ten k as
sum ( distince in km ) <= 10

) ;




STRT MEAN PACE DIST
01 Jan 2018 315.00 6
06 Jan 2018 296.67 /
13 Jan 2018 297.67 7

Where's my 11 km run?




_———————

any runs cumulative dist <10
and
one run cumulative dist >=10




pattern ( )




pattern ( under 10k* )




pattern ( under 10k* )

define

under 10k as

sum ( distance in km ) < 10,

as

sum ( distance in km ) >=

Includes under 10k values




AR | |\ /117 1
match recognize (

order by run date
measures
first ( run date ) as strt ,
round ( avg ( time in s /
distance in km ), 2 ) as mean pace
sum ( distance in km ) as dist

pattern ( under 10k* )
define
under 10k as
sum ( distance in km ) < 10,
as
sum ( distance in km ) >=




STRT MEAN PACE DIST
01 Jan 2018 318.48 17
06 Jan 2018 299.00 12

Hmmm....




B R | [\ [/ 7 /7 s
match recognize (
order by run date

measures
first ( run date ) as strt ,

round ( avg ( time in s /
distance in km ), 2 ) as mean pace
sum ( distance in km ) as dist

pattern ( under 10k* over 10k )

define
under 10k as
sum ( distance in km ) < 10,
over 10k as
sum ( distance in km ) >= 10

) ;



after match skip to next row




STRT MEAN PACE DIST
01 Jan 2018 318.48 17
02 Jan 2018 322.73 16
03 Jan 2018 325.45 11
06 Jan 2018 299.00 12







r

Photo by Doruk Yém'eniéi on Unsplas

va"



https://unsplash.com/photos/crIHkqaDinw?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

What About Query Performance?




/ Non-deterministic

MATCH RECOGNIZE SORT




MATCH RECOGNIZE SORT
DETERMINISTIC FINITE AUTO






https://pixabay.com/en/color-run-rainbow-run-running-698417/

R

How oftendidlrun5km =

Followed by 2+ 1 km runs
Within 7 days?




pattern ( five km one km {2,} )




pattern ( five km one km {2,} )
define
five km as distance in km = 5,




pattern ( five km one km {2,} )
define
five km as distance in km = 5,
one _ km as distance in _ km = 1




pattern ( five km one km {2,} )
define
five km as distance in km = 5,
one _ km as distance in _ km = 1
and run date < first ( run date ) + 7




match recognize (
order by run date
measures
first ( run date ) as start date,
count (*) as total runs
pattern ( five km one km {2,} )
define
five km as distance in km = 5,
one _ km as distance in _ km = 1
and run date < first ( run date ) + 7




START _DATE TOTAL RUNS

06 Jan 2018 3
13 Jan 2018 3




Why would | want to do that?!






https://pixabay.com/en/money-laundering-crime-fighting-1963184/

Row Pattern Matching Use Cases

Fraud Analytics
2+ $1trx between acts
1$10,000 trx in 7 days

Customer Retention
2+ orders/month for years
Max 2 orders past 6 mths

Stock Market Trends
Price rose 3 days
Then fell 3 days

Date Ranges
Finding gaps & overlaps






http://www.gratisography.com/

A

————
o —————————
— ——

—

— = = — ——

ﬁ?— 7‘
—————

(Regular) [exprsion]+ are easy tfo‘
missteak




regularexp

® %  Mm

SAVE & SHARE

B save regex ctrl+s
FLAVOR

<> pere (php) "

<> Javascript
<> python
<> golang
TOOLS

[# code generator

i regex debugger

REGULAR EXPRESSION

2 matches, 27 steps (~0ms)

(s)(1){2,} gmx
TEST STRING SWITCH TO UNIT TESTS »
1510511511

regex

101.com

SUBSTITUTION

B @regex101 § donate

EXPLAMNATION

v / (5001042, F / gmx
» 1st Capturing Group (5)
5 matches the character 5 literally (case sensitive)
» 2nd Capturing Group (1){2,}
12, Quantifier — Matches between 2 and unlimited
times, as many times as possible, giving back as needed

MATCH INFORMATION

Match 1

Full match 4-7 "511°
Group 1. 4-5 °E°
Group 2. 6-7 "1°
Match 2

[Full'mateh| 7-10 511
Group 1. 7-8 7%
Group 2. g9-18 "1°

QUICK REFEREMNCE

all tokens

common tokens +
general tokens
anchaors

meta sequences

* O 6 @ % (0

quantifiers -

| contact

A single character of: a, ... [abc]
A character except: &, ... [“abc]
A character in the range... [a-z]
A character notinther... [*a-z]
A character inthe ra.. [a-zA-Z]

Any single character

Any whitespace character \s

bug reports & feedback 1M wiki

o



classifier
=> Which variable matched?




classifier
=> Which variable matched?

match_number
=> Which group is this?




classifier
=> Which variable matched?

match_number
=> Which group is this?

all rows per match




classifier
=> Which variable matched?

match_number
=> Which group is this?

all rows per match with unmatched rows
=> Show me everything!




measures
classifier () as var,
match number () as grp

all rows per match with unmatched rows




RUN DATE VAR GRP TIME IN SDISTANCE IN KM
01 Jan 2018 310 1
02 Jan 2018 1,600 5
03 Jan 2018 3,580 10
06 Jan 2018 FIVE KM 1 1,550 5
07 Jan 2018 ONE KM 1 300 1
10 Jan 2018 ONE KM 1 280 1
13 Jan 2018 FIVE KM 2 1,530 5
14 Jan 2018 ONE_ KM 2 295 1
15 Jan 2018 ONE_ KM 2 292 1




4 sm“ e Bl VT I L P&l ¥~

02 Jan 2018



SIGN UP
AGAIN
TODAY!

DISCOUNTED B2
|  PRICES



https://pixabay.com/en/marathon-runner-fitness-run-1494648/

ORACLE Live SQL

@ Help

O Feedback

R chns.saxon@oracle.com ¥

%

C

N woqm

£ 3 o

Home

SOL Worksheet

My Session

Schema

Design

My Scripts

My Tutonals

Code Library

Q, match_recognize

cseuvay [IVESQl.Oracle.com

Intreduction to MATCH _RECOGNIZE

This is a simple example that introduces the
main keywords used in MATCH_RECOGNIZE.
During this tutorial you will explore how to

Tutorial @17 [*1.3 years ago

MATCH_RECOGNIZE - Using Built-In
Measures

In this tutorial we will review the two built-in
measures that are part of
MATCH_RECOGNIZE. These measures are

Tutorial @14 [*1.6 years ago

MATCH_RECOGHNIZE - Fraud demo for
CracleCODE events

This is a simple demo showing how to use
SQL pattern matching for fraud analysis. It is
part of a presentation for the OracleCODE

Tutoria [ » BE} EI1.2 years ago

Sessionization with
MATCH_RECOGNIZE and JSON

How to use new 12c 5QL pattern matching
match_recognize feature for sessionization
analysis based on JSON web log files

Tutorial @13 EI‘I.I years ago

MATCH_RECOGNIZE - Empty Matches
and Unmatched Rows

The aim of this tutorial is to explain the
difference between the various row output
options within MATC RECOGNIZE, specifically

MATCH_RECOGNIZE - Log file
sessionization analysis

How to use new 12c SQL pattern matching
match_recognize feature for sessionization
analysis on web log files

Tutorial @12 m2.1 Wears ago

MATCH_RECOGNIZE - What to include
in the MEASURES clause

This tutorial will help you understand why
you might get errors such as ORA-904 "%s:
invalid identifier" or ORA-918 "column

MATCH_RECOGNIZE - SKIP TO where
exactly?

We use the AFTER MATCH SKIP clause to
determine the precise point to resume row
pattern matching after a non-empty match is

Tutoria 01z EILG years ago

MATCH_RECOGNIZE - importance of
PARTITION BY and ORDER BY

The aim of this tutorial is to explain the
importance of using PARTITION BY and
ORDER BY to ensure the correct results are

Area

All s

Category
All '

Types
WAl
'®) Tutorials

) Scripts

Sort By

\J) Date Added
'® Executions
) Name

) Likes

I Show Liked Only
Results Per Page

60 *

Reset Search

(i

i
l




Oracle SQL for Analytics

Complete Guide to SQL
Pattern Matching

Volume 1 - Getting Started

Keith Laker
Analytic SQL PM

&
FREE!

SQL for Data Warehousing and Analytics
https://oracle-big-data.blogspot.co.uk



https://itunes.apple.com/us/book/complete-guide-to-sql-pattern-matching-volume-1/id1302139558?ls=1
https://www.dropbox.com/s/et9qpp59ujioj1h/Complete%20Guide%20to%20SQL%20Pattern%20Matching%20-%20Vol%201.pdf

s ( ‘,

Ryan McGuire / Gratisography



http://www.gratisography.com/

