ORACLE

. , _
Explain the Explain Plan ——
INTERPRETING EXECUTION PLANS FOR SQL STATEMENTS g g

® 0 06
Maria Colgan

Master Product Manager

Oracle Database
January 2020

- F & 4 ’
Y # 7 7

Safe harbor statement

The following is intended to outline our general product direction. It is intended for information
purposes only, and may not be incorporated into any contract. It is not a commitment to deliver
any material, code, or functionality, and should not be relied upon in making purchasing
decisions.

The development, release, timing, and pricing of any features or functionality described for
Oracle’s products may change and remains at the sole discretion of Oracle Corporation.

Confidential - © 2019 Oracle

Program Agenda -

1 What is an execution plan
2 How to generate a plan

3 Understanding execution plans
4 Execution Plan Example

_ ‘ -

Program Agenda -

1 What is an execution plan
2 How to generate a plan

3 Understanding execution plans
4 Execution Plan Example

What is an execution plan?

Query:

SELECT prod_ category, avg(amount sold)
FROM sales s, products p

WHERE p.prod id = s.prod id

GROUP BY prod category;

Tabular representation of plan Tree-shaped representation of plan

| Id _| Operation | Name I ' GROUP BY

	SELECT STATEMENT	
	HASH GROUP BY	
* 2	HASH JOIN	

TABLE ACCESS FULL| PRODUCTS |
TABLE ACCESS FULL| SALES |

F 4 y
"'oY Iy
5 y ¥ 4 f 4 # -
_ : R 1/0/ 7

Additional information under the execution plan

SELECT /*+ gather_plan_statistics */ count(*) FROM sales? WHERE

prod_id=to_number{'133") Access predicate
Plan hash value: 1631620387 -
 Where clause predicate used for
| 1d | Operation | Mane | Starts | E-Rous | Cost (2CPU)I A-Rows | data retrieval
| él “SORT ROUREGATE. | 11 a1 20 TE e The start and stop keys for an index
1* (2)1 INDEX RANGE SCAMI MY_PROD_IND | 11 12762 1 35 (0} 11574 |

» |f rowids are passed to a table scan

Predicate Information (identified by operation id):

2)- access("PROD_ID"=139)

Additional information under the execution plan

SQL> SELECT username

e peexneme Filter predicate

3 WHERE username LIKE 'MAR%';

o » Where clause predicate that is not
- used for data retrieval but to
Plan hash value: 2982854235 eliminate uninteresting row once
, _ the data is found
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
| @ | SELECT STATEMENT | | | | 2 (100) | |
|* 1 | TABLE ACCESS FULL| MY_USERS | 1| 66 | 2 (0)| 00:00:01 |

Predicate Information (identified by operation id):

1 - filter("USERNAME" LIKE 'MAR%')

& 7
Y < - 4 o ol y. Y AW Ve 4

Additional information under the execution plan

SELECT .prod_name, sun(s, t_sold) amt FROM Sales s, -

Products p GHEEE e s?grrfoz_?gggrjprzg_id SED p.supzl‘iezr‘fid — NOte Se Ctlon

ssup_id group by p.prod_name

Plan hash value: 187119048 » Details on Optlmlzer features used
| Id | Operation | Mame | Rows | Bytes | Cost (ZCPU)I such as. _ _

| O | SELECT STATEMENT | | | | 573 (100)1 - Rule Based Opt]m]zer (RBO)

v 21 HBSH JomN | | 1 el o o D ic S I

| 31 VIEW | VI_GEC_S | 721 1224 | 570 Emgl ynamic >ampiing

| 4 HASH GROUP BY | | 721 B48 1 570 (10} :

| 5| PARTITION RANGE ALLI | 918Kl 8075KI 530 (391 - Qutlines

| B TABLE ACCESS FULL | SALES | 918Kl 8075KI 530 (3)I) .

I* 71 INDEX RANGE SCAN | PROD.SUPP_IDLINDX | 721 2376 1 1 {(0)I - SQL Profiles or p]an baselines
Predicate Information (identified by operation id): = Ada ptlve PlaﬂS

- Hints (Starting in 19¢)

2 - access("ITEM_1"="P","PROD_ID")
7 - access("P","SUPPLIER_ID"=:SUP_ID)

- SOL plan baseline SOL_PLAN_11v9s0fhSt3zlaalbab10 used for this statement

_ ‘ -

Program Agenda -

1 What is an execution plan
2 How to generate a plan

3 Understanding execution plans
4 Execution Plan Example

Many ways to view an execution plan

Autotrace SQL Developer

ORACLE Entarprise Mana,

utotrace on
on dual;

Monitored SQU Execution Detalls o

i Time & Wait Statistics 10 Statistics

290w | | Dotabase " 10 Requests [1679
bime 0.08 P —
SELECT)TRTEHENT
TABLE A H Detalls
(1] Pt staistics |) Paraliel ||, Actiy
Plan Mash Valie 32969 4
Operation Nama Cotien | Cout Tomahoe | Ex0m| Actis| Mot Toes 10 R | Coll - [CPU Actiity %6 Wit Activty
£ CREATE TABLE STATEMENT 1 167 Jae
1 e
@ Tquco00 7 1sax 1 107
@ — e 0 ez
@ TiRAToR Tam 1o — g 7o
Py STORAGE FULL | ROLLLS_THL M 724N 153 M 3072 75w |45

QL Monitor ROF

e T4 SELECT job_id,SUM(salary),COUNT(*) FROM employees GROUP BY job_id
HAVING SUM(salary)E (SELECT MAX(SUM(salary)) FROM EMPLOYEES GROUP BY

job_id)
| call count cpu elapsed disk query current rows
P, 0.01 .00 0 0 0 0
Execute 1 0.00 0.00 0 [
0.00 0.04 0 14 0 1
total 4 0.01 0.04 0 14 [1

Misses in library cache durmg parse: 1
optimizer mode: ALL_RO\
Parsing user id: 85

Rows Row Source Operation
1 FILTER (cr=14 pr=0 pw 0 t1me us)
19 HASH GROUP BY (cr: =0 p time=90 us cost 4 size= 13 card 1)
107 “RBLE ACCESS FULL EMPLOVEES (cr' 7 pr=0 p
1 SORT AGGREGATE (cr Br=0 pw me

size=1391 card=107)

i
o
E}
H
0

YN
o
o
3

us cost 4 size=: 13 car'd 1)

19 SORT GROUP BY (cr st=4 size=13 card=1)
107 TABLE ACCESS FULL EMPLOYEES (cr i pr 0°pwed time=318 us Cost=3 size=1391 card=107)
Elapsed times include waiting on following events:
Event waited on es Max. wait Total waited
waited
SQL*Net message to client 2 0.00 0.00
Disk file operations I/0 1 0.03 0.03
SQL*Net message from client 2 0.01 0.01
asynch descriptor resize 1 0.00 000
P A

10

.....But there are actually only 2 ways to generate one a

How to generate an execution plan
Two methods for looking at the execution plan

1. EXPLAIN PLAN command

* Displays an execution plan for a SQL statement without actually executing the statement

2. V$SQL_PLAN
« A dictionary view introduced in Oracle 9i that shows the execution plan for a SQL statement that
has been compiled into a cursor in the cursor cache

Under certain conditions the plan shown with EXPLAIN PLAN
can be different from the plan shown using VSSQL_PLAN

n

How to generate an execution plan
EXPLAIN PLAN command & dbms_xplan.display function

SQL> EXPLAIN PLAN FOR
SELECT p.prod name, avg(s.amount sold)

FROM sales s, products p
WHERE p.prod _id = s.prod id
GROUP BY p.prod name;

SQL> SELECT * FROM

table(dbms xplan.display(plan table',null, 'basic'));

t t t
PLAN TABLE STATEMENT FORMAT

NAME ID

12

How to generate an execution plan
Generate & display plan for last SQL statements executed in session

SQL> SELECT p.prod name, avg(s.amount sold)
FROM sales s, products p
WHERE p.prod _id = s.prod id
GROUP BY p.prod name;

SQL> SELECT * FROM
table(dbms xplan.display cursor(null, null, 'basic'));

t
SQL_ID CHILD FORMAT

NUMBER
« Format* is highly customizable - Basic ,Typical, All

— Additional low-level parameters show more detail
*More information on formatting on Optimizer blog E

13

https://blogs.oracle.com/optimizer/entry/displaying_and_reading_the_execution_plans_for_a_sql_statement

Program Agenda S

1 What is an execution plan

3 Understanding execution plans

* Cardinality
» Access paths
« Join methods

« Join order
4 Execution Plan Example

14

S TR S ol
Cardinality

What is it?
Estimate of number rows that will be returned by each operation
How does the Optimizer Determine it?

Cardinality for a single column equality predicate = total num of rows
num of distinct values

For example: A table has 100 rows, a column has 5 distinct values
=> cardinality=20 rows

More complicated predicates have more complicated cardinality calculation
Why should you care? |

It influences everything! Access method, Join type, Join Order etc.

15

_ : s

Identifying cardinality in an execution plan

| Id | Operation | MName | Rows | [Bytes | Cost (ZCPU)I Time I
0	SELECT STATEMENT		I	12 (100)1
1	HNESTED LOOPS		I	I
2	MESTED LOOPS		11 211	12 (9)1 00:00:01
31 MESTED LOOPS		11 185	11 {10} 0000301	
1* 4	HASH JOIN		11 155	10 {10} 0000301
5 1 MERGE JOIM CARTESIANM		107		8774
I* 6	TABLE ACCESS FULL	DEPARTHENTS)	11 30	3 (0)1 00:00:01
7 BUFFER SORT		107		5564
= TABLE ACCESS FULL	EMPLOYEES	107		5564
9	TABLE ACCESS FULL	EMPLOYEES	107	
I* 10	TAELE ACCESS BY INMDEX ROWIDI DEPARTHMEMTS)	11 30	1 (0} 00:00:01	
I* 11	IMNDEX UMIQUE SCAM	DEPT_ID_PK	I 11	0 (0)1
I* 12	INDEX UNIQUE SCAM	JOB_ID_PK	11	0 (0)1
I 13	TARELE ACCESS BY INMDEX ROWID	JOBS	11 26	1 (0} 00:00:01
' Cardinality - estimated #				
Predicate Information (identified by operation id): of rows returned				

4 - access{“E"."MANAGER_ID"="E"."EMPLOYEE_ID" aN Determine correct cardinality using a SELECT
"E","DEPARTHMENT _ID"="D" ,"DEPARTMENT _I

fFilter("E"."sALARY"+("E"."saLary"+"E"."coMil COUNT(*) from each table applying any WHERE
Clause predicates belonging to that table

e
filter("D",6 "DEPARTMENT _MNAME"='Sales'
filter("D","DEPARTMENT _NAME"="'Sales’
access("E","DEPARTHMENT_ID"="D", "DEPARTMENT_ID")
access("E","JOB_ID"="J" ,"JOB_ID")

el

Checking cardinality estimates

SELECT /*+ gather plan statistics */
p.prod name, SUM(s.quantity sold)

FROM sales s, products p
WHERE s.prod id =p.prod id
GROUP BY p.prod name ;

SELECT * FROM table (
DBMS XPLAN.DISPLAY CURSOR(FORMAT=>'ALLSTATS LAST'));

17 E

Checking cardinality estimates

SELECT * FROM table (

DBMS XPLAN.DISPLAY CURSOR(FORMAT=>'ALLSTATS LAST'));

| Id | Operation | MName | Starts | E-Rows

A-Rows | A-Time | Buffers | OMem | 1Mem

| Used-Mem |

71

| SELECT STATEMENT I I 1 00:00300,57 | 1633 | I
| HASH GROUP BY I I 1 71 71 |00:00:00,57 | 1635 |
| HASH JOIN I I 1 318K 918K |00 00:00,85 | 1638 |
I TABLE ACCESS STORAGE FULL | PRODUCTS | 1 72 72 |j00:00:00,01 | 31 I
I PARTITION RANGE ALL I I 1 318K 918K K003 00:00,37 | 1635 | |
I TRELE ACCESS STORAGE FULLI SALES I 8 918K |00 00:00,20 | 1635 |

799K1 799KI 3073K (01
933K1 933KI 1279K (0)]

18

Compare estimated number of rows (E-Rows) with actual
rows returned (A-Rows)

Checking cardinality estimates
Extra information you get with ALLSTATS

SELECT * FROM table (
DBMS XPLAN.DISPLAY CURSOR(FORMAT=>'ALLSTATS LAST'));

| Id | Operation | MName I Starts | E-Rows | A-Rows | A-Time | Buffers | OMem | 1Mem | Used-Mem |
I | SELECT STATEMENT I I 1 | 71 100:00:00,57 | 1638 | | I I
I | HASH GROUP BY I I 1 71 | 71 100:00:00,57 | 1638 | 799KI1 799KI 3079K (0}
| | HASH JOIN I I 1 918K 918K 100:00:00,85 | 1638 | 933Kl 933KI 1279K (0}
I I TABLE ACCESS STORAGE FULL | PRODUCTS |l 1 72 | 72 100:00:00,01 | 31 | I I
| I PARTITION RANGE ALL I I 1 918K 918K 100:00:00,37 | 1635 | | I I
I I TABLE ACCESS STORAGE FULL! SALES I g I 1635 | I I

318K 918K 100:00300,20

Starts indicates the number of times that step, or operation was done

In this case the SALES table is partitioned and has 28 partitions

Checking cardinality estimates
Extra information you get with ALLSTATS

SELECT * FROM table (
DBMS XPLAN.DISPLAY CURSOR(FORMAT=>'ALLSTATS LAST'));

| Id | Operation | MName | Starts | E-Rows | A-Rows | A-Time Buffers OMem | 1Mem | Used-Mem |

I 71 100:00:00,57 1633 I I I
711 71 100:00300,57 1638 799K1 799KI 3079K (0)1
318K| 918K 100:00:00,85 1633 933K1 933KI 1279K (0)]

| SELECT STATEMENT I I
I I
I
I 72 | 72 100:00:00,01 3 I I I
I
I

I
| HASH GROUP BY I
| HASH JOIN I I
I TABLE ACCESS STORAGE FULL | PRODUCTS |
I I 318K| 918K 100:00:00,37 1635 I
I I

PARTITION RANGE ALL I I
1635 I I

TRELE ACCESS STORAGE FULLI SALES

318K 918K 100:00300,20

Buffers indicates the number of buffers that need to be read for
each step

20

Checking cardinality estimates
Extra information you get with ALLSTATS

SELECT * FROM table (
DBMS XPLAN.DISPLAY CURSOR(FORMAT=>'ALLSTATS LAST'));

OMem | 1Mem | Used-Mem |

| Id | Operation | MName | Starts | E-Rows | A-Rows | A-Time | Buffers

I 71 100:00:00,57

I | SELECT STATEMENT I I I I 1633 |l I I I
I | HASH GROUP BY I I I 711 71 100:00:00,57 | 1638 || 799KI 799KI 3079K (0)|
|* | HASH JOIN I I I 318K| 918K 100:00:00,85 | 1638 || 933Kl 933K 12739K (0)|
I I TABLE ACCESS STORAGE FULL | PRODUCTS | I 72 | 72 100:00:00,01 | 3 I I I
I I PARTITION RANGE ALL I I I 318K| 918K 100300:00,37 | 1635 |l I I
I I I I I I I

TABLE ACCESS STORAGE FULLI SALES 918K | 318K100:00300,20 1635
OMem - estimated amount of memory needed
MMem - amount of memory needed to perform the operation in 1 pass

Used-Mem - actual amount of memory used and number of passes required

21 E

Checking cardinality estimates for Parallel Execution

SELECT * FROM table (
DBMS XPLAN.DISPLAY CURSOR(FORMAT=>'ALLSTATS LAST'));

| Id | Operation | Mame | Starts | E-Rows IQ‘RONS I{ A-Time | Buffers | OMem | 1Mem | Used-Mem I.

| 0 | SELECT STATEMENT | | 1 | 1p0:00sNote: a lot of the data is zero in
| 11 PX COORDINATOR | | 1 | 190100

|21 PX SEND OC (RANDOM) | $T010002 | 0 711 o 190:00:the A-rows column because we
| 31 HASH GROUP BY | | 0 71 | 0 16030031 -

| 41 PX RECEIVE | 0 711 o 1go:00:0nly show last execution of the
| 5| P¥ SEND HASH | 710001 | 0 71 | 0 1603003 .

| 61 HASH GROUP BY | 0 711 o gewescursor which is done by the QC.
1% 7 HASH JOIN | | 0 18K 0 190100

| 8| P¥ RECEIVE | | 0 72 | 0| 0:00:.Need to use ALLSTATS ALL to see
| 9 P¥ SEND BROADCAST | 710000 | 0 72 | 0 190500

| 10 | P¥ BLOCK ITERATOR | | 0 72 | o 180:00:1NfO ON all parallel server

1% 11 | TABLE ACCESS STORAGE FULLI PRODUCTS | 0 72 | 0 16030031 :

| 12 | PY BLOCK ITERATOR | | 0 18K| o 180:00:POCESSES execution of cursors
1* 13 | TABLE ACCESS STORAGE FULL | SALES | 0 918K| 0 1905005 b ywn s - : : :

22

& g
Y 4 V £ &
g . > g y ¥ J & y 7 _
\ > [y 4 I L =

Checking cardinality estimates for Parallel Execution

SELECT * FROM table (
DBMS XPLAN.DISPLAY CURSOR(FORMAT=>'ALLSTATS ALL'));

| Id | Operation | Mame | Starts || E-Rows | A-Rows || A-Time | Buffers | OMem | 1Mem | 0/1/M |
| O | SELECT STATEMENT | | 1|l 71 1P0:00:00,65 | 51 | I I I
| 11 P¥X CODRDINATOR | | 1|l 71 1P0:00:00,65 | 51 | I I l
| 21 PX SEND OC (RANDOM) | :TQL0002 | 0|l 71 0 1P0:00:00,01 | 01 I I l
I 31 HASH GROUP BY | | 16 |l 71 10 [P0:00:01,00 | 01 85Kl 858Kl 16/0/01
I 41 P¥ RECEIVE | | 16 |l 71 438 1P0:00:00,76 | 01 I I I
I 51 P¥ SEND HASH | :TQ10001 | 0|l 71 0 1P0:00:00,01 | 01 I I I
Il 61 HASH GROUP BY | | 16 |l 71 520 1P0:00:02,93 | 446 | 813Kl 813Kl 16/0/01
I* 71 HASH JOIN | | 16 |l 918K 127K1P0:00:03,65 | 446 | 10839KI 1083KI 16/0/01
| 81 P¥ RECEIVE | | 16 |l 72 1152 [P0:00:01,03 | 01 I I l
Il 91 P¥ SEND BROADCAST | :TQLO000 | 0|l 72 0 1P0:00:00,01 | 01 I I l
[10 | P¥ BLOCK ITERATOR | | 16 |l 72 40 [P0:00:00,01 | 2 | I I I
[* 11 | TABLE ACCESS STORAGE FULLI PRODUCTS | 1|l 72 40 [P0:00:00,01 | 2 | I I I
I 12 | P¥ BLOCK ITERATOR | | 16 |l 918K 127K1P0:00:02,00 | 446 | I I I
[* 13 | TABLE ACCESS STORAGE FULL | SALES | 223 |l 918K 127K1P0:00:00,09 | 446 | I I l

*

: E

Check cardinality

sSQL ID

Parallel
Execution Started
Last Refresh Time

Execution ID
User

Fetch Calls

Srmkzxx90m41n (&)

&2

Time & Wait Statistics

Duration

Fri Jul 23, 2010 2:11:49 PM

Fri Jul 22, 2010 2:12:10 PM

18777217
SH
=)

PLYSQL 2 Java

Database Time

Os

s - o=
L 27 4=

o.

wait activiey v [10 C

using SQL Monitor

I0 Statistics

Buffer ot I 5
10 Requests]l 5.061
e s

Details

L

Plan Statistics |;;€é Plan l@ Parallel | & Activity I Metrics J

Plan Hash wvalues 222014592

Operaton Name

., [SELECT STATEMENT

@ Cl PX COORDIMNATOR

737 Cl PX SEMD QC (RANDOM) :TQ10002
[757) B HASH GROUP BY

[757) El PX RECEIVE

a5 El PX SEND HASH :TQ10001
a5 £ HASH GROUP BY

(7 Y] = HASH JOIN

(737) B PX BLOCK I...

(73 7) TABLE ACC... PRODUCTS
(737} El BUFFER SORT

(73 7) = PX RECEIVE

@ £l PX SEND ... :TQ10000
@ =l PARTI...

@ TABL... SALES2

Estimated Rows

F1i
F1i
F1i
F1i
F1i
919K
72
7z

19K
19K
19K

219K

Cost

1,220
1,220
1,280
1,280
1.280

1,259

1.254
1.254
1.254

1.254

Q

Tine...

TIP: Righ

Exec...

W K K N NNNNNNNNNOGNDWQ

T P T

Actual Rows
zral

71

il

71

71

71

71
32,675 K
72

7z
FL,351K
FL.,351K
7,351K
3,67SK

3.67SK

Me...

imMe

zZMe
imMe

zZmMe

e table allows to toggle between IO Requests and IO Bytes

Tem... I0 ... CP... Wait Activity %0
s
==
W ==
=

10ome 3.7... e I 7S

- 2o

S72

Easiest way to compare the estimated number of rows returned
with actual rows returned

24

Solutions to incorrect cardinality estimates

Cause Solution

Stale or missing statistics DBMS_STATS
Data Skew Create a histogram

Multiple single column predicates on atable Create a column group using
DBMS_STATS.CREATE_EXTENDED_STATS

Function wrapped column Create statistics on the funct wrapped
column using
DBMS_STATS.CREATE_EXTENDED_STATS

Multiple columns used in a join Create a column group on join columns
USiNg DBMS_STATS.CREATE_EXTENDED_STAT

Complicated expression containing Use dynamic sampling level 4 or higher
columns from multiple tables

. E

Program Agenda S

1 What is an execution plan

3 Understanding execution plans

* Cardinality
* Access paths
« Join methods

« Join order
4 Execution Plan Example

26

Access Paths - Getting the data

Access Path Explanation

Full table scan

Table access by Rowid
Index unique scan
Index range scan

Index skip scan
Full index scan

Fast full index scan
Index joins

Bitmap indexes

Reads all rows from table & filters out those that do not meet the where clause predicates. Used when
no index, DOP set etc.

Rowid specifies the datafile & data block containing the row and the location of the row in that block.
Used if rowid supplied by index or directly in a where clause predicate

Only one row will be returned. Used when table contains a UNIQUE or a PRIMARY KEY constraint that
guarantees that only a single row is accessed e.g. equality predicate on PRIMARY KEY column

Accesses adjacent index entries returns ROWID values Used with equality on non-unique indexes or
range predicate on unique indexes (<.>, between etc)

Skips the leading edge (column) of the index & uses the rest Advantageous if there are few distinct
values in the leading column and many distinct values in the non-leading column or columns of the
index

Processes all leaf blocks of an index, but only enough branch blocks to find 15t leaf block. Used when all
necessary columns are in index & order by clause matches index structure or if a sort merge join is
done

Scans all blocks in index used to replace a Full Table Scan when all necessary columns are in the index.
Using multi-block |0 & can going parallel

Hash join of several indexes that together contain all the table columns that are referenced in the query.
Won't eliminate a sort operation

Uses a bitmap for key values and a mapping function that converts each bit position to a rowid. Can
efficiently merge indexes that correspond to several conditions in a WHERE clause

& 7
R fihe 0 gt L TRRUONS ISR B
Y ™ - 4 “ ol Y. Y AW Ve 4

O	SELECT STATEHMENT	I		12 (100}	
1 1 MESTED LOOPS					
2 1 NMESTED LOOPS	I 1 1 211	12 (921 0000301			
3 1 HMESTED LOOPS		1 1 135 1	11 (1031 00:00:01		
1+ 4	HASH JOIN	I 1 1 155	10 (1031 00:00:01		
5 1 .mﬂ		107	sS7v74	= (O] 00:00:01	
* & 1 TABLE ACCESS FULL L _DNEPaR THEMTC	11 20 1 = Ol Q00001				
71	I 107	5564	=3 (0O} QOz00:01		
=		FHPI NYEFFEFS	107	5554	= (el BN Q:zQ0:z01
I = I	000301				
I* 10	TARAELE ACCESS BY IMNDEX ROWID	I DEPARTHENTS	1 1 30	1 (01 Q0001	
1#*+ 11	1 THNE: LINTOLIE _SCakd	-DEPTID PR i T i s o			
1* 12 1 INDEX UNIQUE SCAMN	JOB_ID_PK	1 1	Q (Ol		
13	TABLE ACCESS BY IMNDEX ROWID —IO8S i = 25— == S Q:00:01				

Predicate Information {identified by operation id): Lookin Operatlon section to see how
an object is being accessed
4 — access("E"."MANAGER_ID"="E".,"EMPLOYEE_ID" AND

"E" . "DEPARTHMENT_ID"="D"_, “DEPARTHENT_ID")

Filter("E","SALARY"+("E" ., "SALARY"+"E" . "COMMISSION_PCT")>="E"."SALARY"+{"E" . "SAL
ARY"+"E" . "COMMISSIOM_PCT")

Filter("D", "DEPARTMENT_MAME"='Sales")

Filter("D", "DEPARTMENT_MAME"='Sales"')

access{"E" ,"DEPARTHMENT _ID"="D" _, "DEPARTHMENT_ID")
access{("E" ["JOB_ID"="J" _“JOEB_ID")

If the wrong access method is being used check cardinality, join order...

: E

Access path example 1
What plan would you expect for this query?

Table customers contains 10K rows & has a primary key on cust_id

SELECT country id, name
FROM customers

WHERE cust _id IN (100,200,100000);

Id	Operation	Name	Rows	Bytes	Cost (%CPU)	Time
©	SELECT STATEMENT		3	39	3 (0)] 00:00:01	
1	[INLIST ITERATOR]		I I I			
2	TABLE ACCESS BY INDEX ROWID	CUSTOMERS	3	39	3 (0)] 00:00:01	
[* 3 | INDEX UNIQUE SCAN | C ID IDX | 3 | | 2 (0)] 00:00:01 |

3 - access("CUST ID"=100 OR "CUST ID"=200 OR "CUST ID"=100000)

29

Access path example 2
What plan would you expect for this query?

Table customers contains 10K rows & has a primary key on cust_id

SELECT country id, name
FROM customers
WHERE cust _id BETWEEN 100 AND 150;

Id	Operation	Name	Rows	Bytes	Cost (%CPU)	Time
©	SELECT STATEMENT		1	13	3 ()	00:00:01
1	TABLE ACCESS BY INDEX ROWID BATCHED	CUSTOMERS	1	13	3 ()	00:00:01
[* 2 | INDEX RANGE SCAN | C_ID_IDX | 1 | | 2 ()| 00:00:01 |

30

& 7
R fihe 0 gt L TRRUONS ISR B
Y ™ - 4 “ ol Y. Y AW Ve 4

Access path example 3
What plan would you expect for this query?

Table customers contains 10K rows & has a primary key on cust_id

SELECT country id, name
FROM customers
WHERE country name = ‘USA’;

Id	Operation	Name	Rows	Bytes	Cost (%CPU)	Time
©	SELECT STATEMENT		30	480	5 ()	00:00:01
* 1		(TABLE ACCESS FULLJ] CUSTOMERS	30	480	5 ()	00:00:01

31

I'4 v
- . Y & 4 V J 4 -
_ | . Y e & r'4/ & /fr,‘/ Y & -

Common access path issues

lssue " Cause

Uses a table scan instead of index DOP on table but not index, value of MBRC

Picks wrong index Stale or missing statistics
Cost of full index access is cheaper than index

look up followed by table access
Picks index that matches most # of column

32

Program Agenda S

1 What is an execution plan

3 Understanding execution plans

* Cardinality
» Access paths
e Join methods

« Join order
4 Execution Plan Example

33

Join methods

Join Methods Explanation

Nested Loops joins For every row in the outer table, Oracle accesses all the rows in the inner table

Useful when joining small subsets of data and there is an efficient way to access the
second table (index look up)

Hash Joins The smaller of two tables is scan and resulting rows are used to build a hash table
on the join key in memory. The larger table is then scan, join column of the resulting

rows are hashed and the values used to probe the hash table to find the matching
rows. Useful for larger tables & if equality predicate

Sort Merge joins Consists of two steps:
1. Sort join operation: Both the inputs are sorted on the join key.
2. Merge join operation: The sorted lists are merged together.
Useful when the join condition between two tables is an inequality condition

34

Join types

Join Type Explanation

Inner Joins @ Returns all rows that satisfy the join condition

Outer Joins Returns all rows that satisfy the join condition and also returns all of the rows from the table
wiowsin o 1oron— Without the (+) for which no rows from the other table satisfy the join condition
Cartesian AL 2 Joins every row from one data source with every row from the other data source, creating

Joins ' the Cartesian Product of the two sets. Only good if tables are very small. Only choice if
there is no join condition specified in query

Semi-Join @ Returns a row from the outer table when a matching row exists in the subqugry data se’f.
Typically used when there is an EXISTS or an IN predicate, where we aren’t interested in
returning rows from the subquery but merely checking a match exists

Anti-Join : Returns a row from the outer table when a matching row does not exist in the subquery data
set. Typically used when there is a NOT EXISTS or NOT IN predicate, where we aren't
interested in returning rows from the subquery but merely checking a match doesn’t exists

& 7
R fihe 0 gt L TRRUONS ISR B
Y ™ - 4 “ ol Y. Y AW Ve 4

| Id | Operation | MName | Rows | Bytes

| O | SELECT STATEMENT | | |

| 1 1 [HESTED LO0OPS] ; } |

I 2 | i i T 21T A TOUY

| 3 | | 11 185 1071 0020001 |
I* 4 | | | T 1T 155 10T 00300301 |
| 5 | MERGE JOIN CARTESIAN | | 107 | 8774 (0} 00:00:01 |
I* B | TABLE ACCESS FULL | DEPARTHENTS | 1 1 30 (0} 00200301 |
I 7 BUFFER SORT | | 107 | 5564 (0)1 00200301 |
- TABLE ACCESS FULL | EMPLOYEES | 107 | G564 (0} 00200301 |
| 9| TABLE ACCESS FULL | EMPLOYEES | 107 | 7811 (0)1 00200301 |
I* 10 | TABLE ACCESS BY INDEX ROWIDI DEPARTHENTS | 1 1 20 (0)1 00200301 |
I* 11 | INDEX UNIQUE SCAN | DEPT_ID_PK | 1 (0} |
|* 12 | INDEX UNIOUE SCAN | JOB_ID_PK | 1 . et .
| 13 | TABLE ACCESS BY INDEX ROWID | JOBS | 1 Look in the Operation section to

--- check the right join method is used

4 - access{"E","MANAGER_ID"="E","EMPLOYEE_ID" AND
"E","DEPARTHMENT _ID"="D","DEPARTHMENT _ID")
filter("E"."SALARY"+("E"."SALARY"+"E" . "COMMISSION PCT")>="E"."SALARY"+("E"."SAL

If wrong join type is used check stmt is written correctly &
cardinality estimates

Join method example 1
What join method would you expect for this query?

SELECT e.last name, e.salary, d.department name
FROM hr.employees e, hr.departments d

WHERE d.departments name IN ('Marketing’, 'Sales’)
AND e.department id = d.department id;

Employees has 107 rows
Departments has 27 rows
Foreign key relationship between Employees and Departments on dept_id

Join method example 1

What join method would you expect for this query?

SELECT e.last name, e.salary, d.department name
FROM hr.employees e, hr.departments d

WHERE d.departments name IN ('Marketing’, 'Sales’)
AND e.department id = d.department id;

| IA | Operation | Naune | Rows | Bytes | Cost (:3CPU) | Time

0	SELECT STALATEMENT		19	722	3 (0)	0O0:00:01
1	NESTED LOOPS					
2	NESTED LOOPS		19	722	3 (0)	0O0:00:01
* 3	TABLE ACCESS FULL	DEPARTMENTS	2	32	2 (0)	0O0:00:01
* 4	INDEX RANGE SCAI	EMP_DEPARTHMENT IX	10		o (0)	0O0:00:01
5	TABLE ACCESS BY INDEX ROWID	EMPLOYEES	10	2z0	1 (0)	0O0:00:01
Predicate Information (identified by operation id) :

'Marketing' OR "D"."DEPARTHMENT MNAME"='Sales')

3 — filter ("D"."DEPARTMENT NAME™=
4 — access ("EY."DEPARTHMENT IDT"='"D

f.YDEPARTHMENT ID™)

Join method example 2

What join method would you expect for this query?

SELECT o.customer id, l.unit price * l.quantity
FROM oe.orders o, oe.order items 1
WHERE 1l.order_ id = o.order id;

Orders has 105 rows
Order ltems has 665 rows

I 4 y
4 'Y I e
_ B -

Join method example 2

What join method would you expect for this query?

SELECT o.customer id, l.unit price * l.quantity
FROM oe.orders o, oe.order items 1
WHERE 1l.order_ id = o.order id;

Id	Operation	Name	Rows	Bytes	Cost (CPU)
0	SELECT STATEMENT		665	13300	8 (25)
* 1	HASH JOIN		665	13300	8 (25)
2	TAEBLE ACCESS FULL	ORDERS	105	S840	4 (25)
3	TABLE ACCESS FULL	ORDER ITEMS	665	7980	q (25)

Predicate Information (identified by operation id) :

1 - access ("L"."ORDER_ ID"="0O"."ORDER ID")

& 7
A v o ~ 7 & T & §F 1.

Join method example 3

What join method would you expect for this query?

SELECT o.order id, o.order date ,e.name
FROM oe.orders o , hr.employees e;

Orders has 105 rows
Employees has 107 rows

. F 4 y
. y I s Y 7 4 u —
_ J) = oF P g/ & /fr,‘/ IS = - 7 A A

Join method example 3

What join method would you expect for this query?
SELECT o.order id, o.order date ,e.name

FROM oe.orders o , hr.employees e;

Plan hash value: 3229651163

Id	Operation	Mame	Rows	Bytes	Cost (ZCPU)	Time
0	SELECT STATEMENT	I 11235	120K	33 (7)1 00:00:01		
11 I I 11235	120K	33 (7)1 00:00:01				
21 INDEX FULL SCANM	ORDER_PK	105	420	1 (O)l 00:00:01		
31 BUFFER SORT		107	749	32 (7)1 00:00:01		
4	INDEX FAST FULL SCANI EMP_MAME_IX	107	749	0 (O)I 00:00:01		

Join method example 4

What join method would you expect for this query?

SELECT s.quantity sold
FROM sales s, customers c
WHERE s.cust_id =c.cust_id;

Sales table has 960 Rows

Customer table has 55,500 rows

Customer has a primary key created on cust_id
Sales has a foreign key created on cust_id

Join method example 4

What join method would you expect for this query?

/

No join is needed o -

SELECT s.quantity sold Table elimination transformation
FROM sales s, customers c Optimizer realizes that the join to

. . customers tables is redundant as no
WHERE s.cust_id =c.cust_id; columns are selected Presence of

primary —foreign key relationship
means we can remove table
PLAN_TABLE_OUTPUT

| Id | Operation | Name | Rows | Bytes | Cost (ZCPU)I Time | Pstart| Pstop |
| 0O | SELECT STATEMENT I | 960 | 2880 | 5 (0) 00:00:01 | I I
| 1| PARTITION RAMGE ALLI | 960 | 2880 | 5 (0) 00:00:01 | 11 16 |
| 2 | TABLE ACCESS FULL | SALES | 960 | 2880 | 5 (0) 00:00:01 | 11 16 |

What causes wrong join method to be selected

lssue ___________Cause

Nested loop selected instead of hash join Adaptive Plans in 12c can address
these problems on the fly by
changing the join method after

oracle sees what data is coming out

of the left-hand side of the join .
i

CUIITIC 111 A UIUSLTICTCU Ul UIUCICTU I1dS1 11Ul
so the probe into 2nd table is more
efficient

Cartesian Joins Cardinality underestimation

Hash join selected instead of nested loop

Program Agenda S

1 What is an execution plan

3 Understanding execution plans

* Cardinality
» Access paths
« Join methods

« Join order
4 Execution Plan Example

46

Join order

« The order in which the tables are join in a multi table statement

« |deally start with the table that will eliminate the most rows

« Strongly affected by the access paths available

« Some basic rules

« Joins guaranteed to produce at most one row always go first
 Joins between two row sources that have only one row each

* When outer joins are used the table with the outer join operator must
come after the other table in the predicate

« |f view merging is not possible all tables in the view will be joined before
joining to the tables outside the view

_ : s

Identifying join methods in an execution plan

| Id | Operation | MName | Rows | Bytes | Cost (ZCPU)I Time I
0	SELECT STATEMENT		I	12 (100}
1	HNESTED LOOPS		I	I
2	MESTED LOOPS		1 1 211	12 (931 00:00:01
31 MESTED LOOPS		1 1 185	11 {10)1 00300301	
1* 4	HASH JOIN		1 1 155	10 {10)1 00300301
51 MERGE JOIM CARTESIAN		107	8774	B (0)l 00:00:01
1* B	1TABLE ACCESS FULL T DEPARIMENTS	i i		
71 BUFFER SORT		107		
= 2 TABLE ACCESS FULL	EMPLOYEES	107		
9	5TABLE ACCESS FULL	EMPLOYEES	107	
1* 10 | 4 TABLE ACCESS BY INDEX ROWIDI DEPARTHMENTS | 11 | |
I* 11 | INDEX UMIQUE SCAM | DEPT_ID_PK | 11 | |
1* 12 | INDEX UMIOQUE SCAN | JOB_ID_PK | 11 | |
I 13 | 5 TABLE ACCESS BY IMDEX ROWID | JOBS | 11 |

Predicate Information (identified by operation id): reduce the result set the most

4 - access("E","MANAGER_ID"="E","EMPLOYEE_ID" AND
"E","DEPARTHMENT _ID"="D","DEPARTHMENT _ID")
filter("E"."SALARY"+("E"."SALARY"+"E" . "COMMISSION PCT")>="E"."SALARY"+("E"."SAL

If the join order is not correct, check the statistics, cardinality
& access methods E

Finding the join order for complex SQL

It can be hard to determine Join Order for Complex SQL statements but
it is easily visible in the outline data of plan

SELECT * FROM table(dbms xplan.display cursor (format=>’'TYPICAL|+OUTLINE'|));

Outline Data

BEGIM_OUTLIME_DATA
IGHORE_OPTIM_EMBEDDED_HINTS
OPTIMIZER_FEATURES_EMABLE("11.2,0,.2")
DE_VERSION{'11.2.0.2")

ﬁgigg%giggsgég;SEL$5428C?F1") . .
HERCE ClSELss) The Ieaghpg hint tells
OUTLINE{@"SEL$2") you the JO1IN order

OUTLIME{R"SEL$3")

FULL(BR"SEL$5428C7F1" "D"R@"SEL$3")
IMDEX_RS_ASC(R"SEL$5428C7F1" "E"@“SEL$3" ("EMPLOYEES" . "DEPARTHMEMNT_ID")

IMDEX_RS_ASC{R"SEL$5428C7F1" "E"R"SEL$2" ("EMPLOYEES"."MANAGER_ID")})}
IMDEX _ RS HSC(@ SEL$5428C?F1 J @ SEL$2 ("JOBS".,"JOB_ID")
O[3 e I PARTME Y DEPARTHMENT ID"33
LEADING{E' SEL$5428C?F1 D ‘B SEL$3 "E"RB"SEL$3S" "E"E"SEL$2" "J"E"SEL$Z2" "D"RB"SEL$2"
ML CB"SEL $542°580CAF1" "E"E"SEL £

J . ¥ 4 -
B e | |\ R 17 1

What causes the wrong join order

Causes

Incorrect single table cardinality estimates

Incorrect join cardinality estimates

_ :

Program Agenda S

1 What is an execution plan

3 Understanding execution plans

* Cardinality
* Access paths
« Join methods

e Join order
4 Execution Plan Example

51

Example SQL Statement

Find all the employees who make as much or more than their manager

SELECT el.last name, el.job title, el.total comp

FROM (SELECT e.manager id, e.last name, j.job title,
e.salary+(e.salaryte.commission pct) total comp
FROM employees e, jobs j, departments d

WHERE d.department name = 'Sales’
AND e.department id = d.department_id
AND e.job id = j.job_id) el,

(SELECT e.employee id, e.salary+(e.salaryte.commission pct) tc
FROM employees e, departments d

WHERE d.department name = ‘Sales’

AND e.department id = d.department_id) e2

WHERE el.manager_id = e2.employee id
AND el.total comp >= e2.tc;

I 4 y
4 'Y I e
_ B -

1. Is the estimated number of

IS it a gOOd EXECUtion plan? rows being returned accurate?

I Id | Operation I Mame | Rows | Bites | Cost (ZCPU)I Time |
|
1

QO	SELECT STATEHMENT			12 ({100}
1 1 MESTED LOOPS				
2	HMESTED LOOPS		211	12 (931 00:00:01
3 1 MESTED LOOPS		T 185	11 (10} 00:00:01	
I#* 4	HASH JOIN		1 1 155	10 (10} 00:00:01
5 1 MEFE]	7 S774	[(O)1 00:00:01		
1* 6	o = SO T6661			
I 71 I 3 (0] 00:00:01				
s	i = 3			
9	!			
I#* 10				
I+ 11				
1#* 12	I8			
13	TABLE ACCESS BY INDEX ROWID I JOBS 26	QO:O0z0O1		

3.Are the access

4 — access{"E"."MANAGER_ID"="E" "EMPLOYEE_ID" AND method correct?
"E"."DEPARTHMENT_ID"="D" _ “"DEPARTHMEMT_ID")
filter({"E"."SALARY"+("E" ,"SALARY"+"E" . "COMMISSION_PCT'|}>="E"."SALARY"+("E" . "SAL
ARY"+"E" . "COMMISSIOM_PCT"))

6 — £ilter("D”."DEPARTHENT NAMET = Sales:) 2. Are the cardinality
10 - filter{"D"."DEPARTMENT_NAME"='Sales’ - 5
11 — access("E"."DEPARTMENT_ID"="D", "DEPARTMENT_ SStiMatesaccurate:
12 - access{"E"."JOB_ID"="J"_,"JOB_ID") Means no stats gathered
Note strong indicator this won't be

oonE best possible plan

dynamic sampling used for this statement (level=2)

SELECT STATEMENMT
NMESTED LOOPS

| | |

| | |

} } |

t t |

i i T o1 |

ERGE JOIN CARTESIAMN + + 01 |

1 TRELE ARCCESS FULL | NMFPARTHMENTS | | 3 (0 o1 |
BUFFER SORT | | | 3 (0 01 |

7 TABLE ACCESS FULL | EMPLOYEES | | 3 (0 o1 |

3 TABLE ACCESS FULL I EMPLOYEES | | 3 (0 01 |
TABLE ACCESS BY INDEX ROWIDI DEPARTHENTS | 30 | 1 (0 o1 |
4 INDEX UNIQUE SCAN I DEPT_ID_PK | 1 | 0 (0 |
INDEX UNIOQUE SCAN I JOB_ID_PK | 1 | 0 (0 |
S5TABLE ACCESS BY INDEX ROWID | JOBS | 1 26 | 1 (0 o1 |

dynamic sampling used for this statement (level=2)

access{"E" ,"MANAGER_ID"="E" . "EMPLOYEE_ID" AMND

"E"."DEPARTHMENT_ID"="D" _ “DEPARTHMEMT_ID")
filter{"E".,"SALARY"+("E" ,"SALARY"+"E" , "COMMISSI

ARY"+"E" . "COMMISSION_PCT")
fFilter{"D","DEPARTHENT_NAME"='Sales")
filter("D" "DEPARTHMENT_NAME"="Sales")
access({"E" . "DEPARTHENT_ID"="D" “"DEPARTHMEMT_ID")
access("E" ,"JOB_ID"="J" “JOB_ID")

n

4. Are the right join methods being used?

5. Is the join order correct? Is the table that
eliminates the most rows accessed first?

What does the plan tree look like?

NESTED LOOP | INDEX UNIQUE SCAN -
| [TABLE ACCESS JOBS
|
| INDEX UNIQUE SCAN - |
[TABLE ACCESS DEPARTMENT

|
MERGE JOIN TABLE ACCESS
CARTESIAN | EMPLOVEES |

TABLE ACCESS TABLE ACCESS |
{ DEPARTMENT l EMPLOYEES ‘

& 7
R fihe 0 gt L TRRUONS ISR B
Y ™ - 4 “ ol Y. Y AW Ve 4

SOI Utl 0 n 1. Only 1row is actually returned, and the cost is 4

| Id | Operation | Mame lower now I
| O | SELECT STATEMENT | | ! ?r 2 K100)1 1
| 1 | [NESTED LOOPS — | | | | |
I 2 1 | NESTED LOOPS 4. Join methods have | 11l 102 | a Eogl 00200201 |
= MESTED LOOPS a6 | 7 0)1 0020001 |
| a4 NESTED LOOPS changed to be all NL 1 59 | 6 (0} 00:00:01 |
I 5 | STED _LONPS | 10 2390 | 4 (0)] 00:00:01 |
I* B | 1 |TABLE_ACCESS FULL | DEPARTHMENTS 1 16 | 3 {0) 00:00:01 |
5. Thejoin 7 | [[TABLER BT INDER RUWIDT EMPLOY 10 130 | 1 (0)] 00:00:01 |
: g | 2 | INDE¥ RAMNGE SCAN | EMP_DEPARTMENT_IX 10 | o (0)I |
order has o RECE A T IHDER ROWTT TP 1 30 | 1 (0)] 00:00:01 |
changed 0 1 3| INDEX RANGE SCAN | EMP_MAMAGER_IX 6 | o (0)I |
o1 TAELE ALCESS BY INDEX ROWID 1 JOBS 1 27 | 1 (0)] 00:00:01 |
1* 12 | 4 NTIES LINTL N TR 1T PK 1 | o (0] |
I* 13 | 10 1 | 0 (0)I |
I* 14 | 5 N | 1 16 | 1 (0)] 00:00:01 |
_ _ _ o . 3. Access methods
Creieote Tnferation (0miTied By ALY have chenged for
some tables c o Tits
§ - filter("D"."DEPARTHENT_NAME"='Sales") 2._Ehard1nﬁ!lt!es are Eorre%tand
8 - access("E"."DEPARTMENT_ID"="D","DEPARTMENT_ID") W] (SEkan) Jonin LIS Q17 (tehiie

9 - filter{"E"."SALARY"+("E"."SALARY"+"E"."COMMISSION_PCT")>="E","Ss reduced
LUCOMMISSION_PCT"))

access{"E","MANAGER_ID"="E","EMPLOYEE_ID")

access("E","JOB_ID"="J" "JOB_ID")

access("E","DEPARTMENT_ID"="D", "DEPARTHMENT_ID")

Filter{"D","DEPARTHMENT_MNAME"='Sales"')

10
12

What does the plan tree look like?
|

NESTED LOOP INDEX UNIQUE SCAN - |
TABLE ACCESS DEPARTMENT
NESTED LOOP

[INDEXUNIQUESCAN- |

TABLE ACCESS JOBS
|
NESTED LOOP ' INDEX RANGE SCAN —
[TABLE ACCESS EMPLOYEES
| |
TABLE ACCESS INDEX RANGE SCAN —
TABLE ACCESS EMPLOYEES

DEPARTMENT

/
‘3;/

SOLMaria.

Join the Conversation Related White Papers
2 https://twitter.com/SQLMaria - Explain the Explain Plan

B https://blogs.oracle.com/optimizer/ *Understanding Optimizer Statistics
@ https://sqlmaria.com » Best Practices for Gathering Optimizer

: Statistics

3 https://www.facebook.com/SQLMaria ——————
Ghttps:// /5Q *What to expect from the Optimizer in 19¢
*What to expect from the Optimizer in 12¢
» What to expect from the Optimizer in 11g

http://www.oracle.com/technetwork/database/focus-areas/bi-datawarehousing/twp-explain-the-explain-plan-052011-393674.pdf
http://www.oracle.com/technetwork/database/bi-datawarehousing/twp-statistics-concepts-12c-1963871.pdf
http://www.oracle.com/technetwork/database/bi-datawarehousing/twp-bp-optimizer-stats-04042012-1577139.pdf
https://www.oracle.com/technetwork/database/bi-datawarehousing/twp-optimizer-with-oracledb-19c-5324206.pdf
http://www.oracle.com/technetwork/database/bi-datawarehousing/twp-optimizer-with-oracledb-12c-1963236.pdf
http://www.oracle.com/technetwork/database/focus-areas/bi-datawarehousing/twp-upgrading-10g-to-11g-what-to-ex-133707.pdf

