ORACLE

Harnessing the Power of Optimizer Hints

Maria Colgan

Master Product Manager

Mission Critical Database Technologies
January 2020

~ @SQLMaria

Safe harbor statement

The following is intended to outline our general product direction. It is intended for information
purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any
material, code, or functionality, and should not be relied upon in making purchasing decisions. The
development, release, timing, and pricing of any features or functionality described for Oracle’s
products may change and remains at the sole discretion of Oracle Corporation.

X8 0wt L TRRROTR RN
Harnessing the power of Optimizer hints

Expectations

This session will not instantly make you an Optimizer hint expert!
Adding hints won't magically improve every query you encounter

Optimizer hints should only be used with extreme care

Program Agenda

SN O b~ W

What are hints?

How to use Optimizer hints
Useful Optimizer hints to know
Why are Optimizer hints ignored?
If you can hint it, baseline it

Managing an existing hinted application

AR o et L TRRROWR . AR
What are hints?

Overview

 Hints allow you to influence the Optimizer when it has to choose between
several possibilities

* A hintis a directive that will be followed when applicable
« Can influence everything from Optimizer mode to every operation in plan

« Automatically means the Cost Based Optimizer will be used
* Only exception is the RULE hint, but it must be used alone

What are hints?

Example - directions to the mall

St - - = e
Jeroy = L Macy's - Ozo
SGeary Men's Store \ o >
\ Macy's R
an = o Farrell St =
bre -.é - (g =4 % @.{s@@ &ec.-}
=t @ = > S 25
=\ - = 'b& >
= - Contemporary = =
w Jewish Museum = <
Elis St = 9‘§° <>ST
morial =
lethodist -
Powell St '~?/~o,

eady St

= %
Westfield San
Francsco Centr

Yerba Buena

What are hints?

Hints only evaluated when they apply to a decision that has to be made

Should | walk or drive to the mall?
 Best plan would be to walk

Should | go up 4th, 5t or 6t street?
« Best plan would be to go up 4th street

Should | go in the front or the back door of the mall?
 Best plan would be to go in the back door

Telling me the cheapest parking is at 5th and Mission garage is
irrelevant since | decided to walk

Two different classes of hints

HINTS

l Non-Optimizer Hints l Optimizer Hints

Not all hints influence the Optimizer

Overview

The hint mechanism is not exclusively used by the Optimizer

Several other functional areas use hints too
* Direct path load can be controlled by APPEND hint
» Parallel statement queuing can be controlled by STATEMENT QUEUING hint
« Data management in buffer cache can be influenced by CACHE hint

« What SQL statements get monitored by SQL Monitor can be controlled by
MONITOR hint

« Use of In-Memory column store can be controlled by INMEMORY hint
 Take advantage of new fast ingest for loT controlled by MEMOPTIMIZE WRITE

Checking cardinality estimates
GATHER_PLAN_STATISTICS hint

SELECT /*+ GATHER PLAN STATISTICS*/

p.prod name,
SUM(s.quantity sold)

FROM Products p, Sales s
WHERE s.prod id = p.prod id
GROUP BY p.prod name;

Checking cardinality estimates
GATHER_PLAN_STATISTICS hint

SELECT * FROM table(
DBMS XPLAN.DISPLAY CURSOR(FORMAT=>'ALLSTATS LAST'));

| Id | Operation | Mame | Starts I(E-Rows I FI‘RO@ A-Time | Buffers | OMem | 1Mem | Used-Mem |
| O | SELECT STATEMENT I I 11l I 71 |00:00:00,57 | 1638 | I I I
| 1 | HASH GROUP BY I I 11l 71| 71 (00:00:00,57 | 1638 | 799KI 799KI 3079K (0}
[* 2 1 HASH JOIN I I 11l 918K | 918K [00:00:00,85 | 1638 | 933Kl 933Kl 1279K (0)|
Il 3| TABLE ACCESS STORAGE FULL | PRODUCTS | 11l 72 | 72 (00:00:00,01 | 31 I I I
I 41 PARTITION RANGE ALL I I 1]l 918K | 918K [00:00:00,37 | 1635 | I I I
Il 5| TABLE ACCESS STORAGE FULL! SALES I a\l 918K | 00300:00,20 | 1635 | I I I

« Compare estimated rows returned for each operation in plan to
actual rows returned
« A-Time allows you to see where the time is spent

Checking cardinality estimates
MONITOR hint

SELECT /*+ MONITOR*/ CUST LASTNAME, SUM(AMOUNT SOLD)
FROM Customers ¢, Sales s

WHERE s.cust id = c.cust id ..

] Plan statistics | &2 Plan | | Activity Compare estimated rows

returned for each

Plan Hash Value 1733992766

L... ’ Operation ’ Name r Estimated Rows ‘ Actual Rows\T‘Cost

0| SELECT STATEMENT sl operation in plan to actual
1 B HASH GROUP BY 1 13 7 rOWS retu rned

2 E NESTED LOOPS 1 16 6 - -

3 TABLE ACCESS FULL CUSTOMERS 1 13 5 I T]mEI]ne aIIOWS you to See
4 INDEX RANGE SCAN SALES_CUST 2 16) 1 where the time is Spent

Two different classes of hints

HINTS

Non-Optimizer Hints Optimizer Hints

Inside the Oracle Optimizer

S — R -
- Query Transformation — IR

Rewrite query text to allow it to be processed \ Data D|ct|onary

more efficientl e
d Schema definitions

| _sttistios
Plan Generator

Multiple plans are generated for H
each SQL, using different access < COSt Estlmator
paths and join types. Each plan is Cost is an estimate of the amount of :
costed and plan with the lowest CPU and the number of disk 1/Os, used
cost is used. to perform an operation :

Hints influencing Query Transformations
Overview

First thing the Optimizer does is try to transform (rewrite) your statement
« The goal is to allow additional access or join methods and join orders to be used

Some transformations are always done but some are cost-based
Hints can be used to influence the transformations the Optimizer does

* NO_QUERY_TRANSFORMATION - REWRITE
- MERGE « STAR_TRANSFORMATION

- USE_CONCAT « UNNEST

Hints can also influence all aspects of a plan

Overview

Hints to influence cardinality Hints to influence join methods
DYNAMIC_SAMPLING USE_NL_WITH_INDEX
CARDINALITY USE_HASH

Hints to influence access paths Hints to influence join order
FULL LEADING
INDEX ORDERED

Most hints have corresponding negative hint preceded by word ‘NO_’

More information on hints can be found in chapter 3 of SQL Reference
Guide & chapter 19 of the SQL Tuning Guide

http://docs.oracle.com/cd/B28359_01/server.111/b28286/sql_elements006.htm
https://docs.oracle.com/database/122/TGSQL/influencing-the-optimizer.htm%2523TGSQL246

Hints Classifications
Overview
Single-table - hints that are specified on one table or view
 FULL , INDEX or USE NL
Multi-table - hint that can be specified on one or more tables or views
* LEADING Oor ORDERED
Query block - hints that operate on single query blocks
 STAR TRANSFORMATION Of UNNEST
Statement - hints that apply to the entire SQL statement
e ALL ROWS Or OPTIMIZER FEATURES ENABLE

Program Agenda

18

SN O b~ W

What are hints?

How to use Optimizer hints
Useful Optimizer hints to know
Why are Optimizer hints ignored?
If you can hint it, baseline it

Managing an existing hinted application

How to use Optimizer hints

Overview

Hints are inserted in a SQL statement in the form of a comment with an
additional + sign

They go immediately after the keyword (SELECT, INSERT, etc)

SELECT /* This is a comment */ count(*) FROM Sales;

SELECT /*+ This is a hint */ count(*) FROM Sales;

{ Hint syntax is correct, but it is not a valid hint so is treated as J

comment

How to use Optimizer hints

Overview

Hints and comments can be combined
But best practice is to keep comment and hints in different blocks
« Comments can be put anywhere in a SQL statement not just after keyword

\

SELECT /*+ FULL(s) ang ent*/ count(*) FROM Sales s;

SELECT /*+ This is a FULL(s) */ count(*) FROM Sales s;

SELECT /*+ FULL(s)*/ count(*) FROM Sales s /* comment */;

How to use Optimizer hints
Correctly identifying the object in the hint

Which one of the following hints will trigger the pk_emp index to be used in
this query?

SELECT /*+ index(scott.emp pk emp)*/ * FROM emp e;
SELECT /*+ index(emp pk emp)*/ * FROM emp e;

SELECT /*+ index(pk emp)*/ * FROM emp e;

None of them

How to use Optimizer hints
Correctly identifying the object in the hint

If you use a table alias in the query than you must specify the table alias name
in the hint

Otherwise the hint is not valid

SELECT /*+ index(e pk emp)*/ * FROM emp e;

& 7
i TSI o s
_ B s

How to use Optimizer hints
Hints only apply to the query block in which they appear

SELECT /*+ FULL(e) FULL(d) */ e.last name, e.dept id
FROM employees e
WHERE e.dept id in (SELECT d.dept id

FROM departments d

WHERE d.location id=51);

~

__ KI'he dept table only appears
| Id | Operation | Name | Rows | in the Sub—query, which is

________ seier emrmeny T treated as separate query

| @ |

|* 1 | HASH JOIN | | 5 block.

| 2| ‘ TABLE ACCESS BY INDEX ROWID| DEPARTMENTS |)

|* 3 | INDEX RANGE SCAN | DEPT LOCATION IX Hint has no effect.

| 4 | TABLE ACCESS FULL | EMPLOYEES | 107 | J

How to use Optimizer hints
Hints only apply to the query block in which they appear

SELECT /*+ FULL(e) */ e.last name, e.dept id

FROM employees e

WHERE e.dept id in (SELECT /*+ FULL(d) */ d.dept id
FROM departments d
WHERE d.location 1d=51);

"""""""""""""""" T T o7 The hint on dept now hasan)

| Id | Operation | Name | Rows | By) :
--- effect as it appears in the
I:* 2 I SELECT _STRTEMENT I | correct query block, the sub-

I v
|* 2| TABLE ACCESS FULL| DEPARTMENTS | 1| \query L J
| 3| TABLE ACCESS FULL| EMPLOYEES | 107 | 1177 | 3 (e)lr

W Only exception are statement level hints =

How to use Optimizer hints

Query block names

Oracle automatically names each query block in a SQL statement

e sel$1, ins$2, upd$3, del$4, cri$5, mrg$o, set$7, misc$8

* Displayed using ‘+alias’ format parameter in DBMS_XPLAN procedures
Query block names can be used to specify which block a hint applies to

* /*+ FULL(@QSELS$S2 D) */
The QB_NAME hint can be used to explicitly labels each query block

* /*+ QOB NAME(my name for block) */

. r 4 y
. yy Y & 4 _
_ | . Y g > & r'%/ y d /frl " 4 //A & < > 7

How to use Optimizer hints

Query block names

SELECT /*+ FULL(e) FULL(@QMY SUBQ d) */
e.last name, e.dept 1id

FROM employees e
WHERE e.dept id in (SELECT /*+ QB NAME (MY SUBQ) */
d.dept id
FROM departments d
WHERE d.location i1d=51);

& 7
A = o YN T VS

How to use Optimizer hints

How do | know if my hints are used or not?

Any valid hint will be used
Can check if a hint is valid in hint section of 10053 trace
Lumping Hints

atom_hint=({@=0x124360178 err=0 resol=0 used=1 token=454 org=1 lvl=1 txt=ALL ROWS)
atom_hint=(@=0x2af785e0c260 err=0 resol=1 used=1 token=448 org=1 1v1=3 [txt=FULL {"E") }
Statement Dump = <S===============

USED indicates the hint was used during
the evaluation of the part of the plan it
pertains to
_ Doesn’t mean the final plan will reflectit)

ERR indicates if there
Is an error with hint

How to use Optimizer hints

Example showing how hints are used

SQL Statement

SELECT c.cust name, sum (s.amount sold)
FROM customers c, sales s

WHERE c.cust 1id = s.cust 1id
AND c.cust city = ‘Los Angeles’
AND c.cust province = ‘CA’

AND s.time 1id = ‘09-SEP-18"’

GROUP BY c.cust name;

& 7
R fihe 0 gt L TRRUONS ISR B
Y ™ - 4 “ ol Y. Y Y A e 4

How to use Optimizer hints

Example showing how hints are used

Default plan is a hash join between sales and customers

| Id | Operation | Name | Rows | Bytes | Cost (ZCPU)|
| O | SELECT STATEMENT | | | | 250 (100)]
| 1 | HASH GROUP BY | | 1| B4 | 250 (4)]
I* 2 | HASH JOIN | | 4 | 256 | 249 (4)]
I* 3 | TABLE ACCESS STORAGE FULL | CUSTOMERS | 31 1381 226 (3)I
| 4 | PARTITION RAMNGE SINGLE | | 535 | 9630 | 23 (18)1
I* 5 | TABLE ACCESS STORAGE FULL! SALES | 535 | 9630 | 23 (18)1

But we want the query to use a nested loops join

How to use Optimizer hints

Example showing how hints are used

Hinted SQL statement

SELECT /*+ USE NL(s) */
c.cust name, sum (s.amount sold)

FROM customers c, sales s

WHERE c.cust 1id = s.cust_1id
AND c.cust city = ‘Los Angeles'’
AND c.cust province = ‘CA’

AND s.time id = ‘09-SEP-18"’

GROUP BY c.cust name;

J . ¥ 4 -
B e | |\ R 17 1

How to use Optimizer hints

Example showing how hints are used

Even with the hint we still get a hash join plan

Id	Operation	Name	Rows	Bytes	Cost (%CPU)	Time
©	SELECT STATEMENT				9 (100)	
1	HASH GROUP_BY		1	52	9 (23)	00:00:01
% 2			1	52	8 (13)	00:00:01
3	DN RANGE SINGLE		2	34	2 (0)	00:00:01
% 4	TABLE ACCESS FULL	SALES	2	34	2 (0)	00:00:01
* 5	TABLE ACCESS FULL	CUSTOMERS	13	455	5 (9)	00:00:01

Why did it not use the hint?

How to use Optimizer hints

Example showing how hints are used

Let's look in the 10053 trace file
Dumping Hints

atom_hint=({B=0x13c6e7e20 err=0 resol=1 used=1 token=924 org=1 lv1=3 txt=USE_NL ("S"))
====================== END S{L Statement Dump =====================c

Hint is valid and was used

Why did it not change the plan?

We only hinted the join method we didn’t hint the join order
Hint only valid when sales is on right side

Hint considered ONLY when join order was customers, sales

How to use Optimizer hints
Example showing how hints are used

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| @ | SELECT STATEMENT | | ol & | 9 (100) | |

| 1| HASH GROUP BY | I | 9 (23)| 00:00:01 |

|* 2 | HASH JOIN | | | 256 8 (13)| 00:00:01 |

| 3 | PARTITION RANGE SINGLE| | 3 | 138 2 (0)| ee:00:01 |

|* 4 | TABLE ACCESS FULL | SALES | 535) 9630 2 (0)| 00:00:01 |

|* 5 | TABLE ACCESS FULL | CUSTOMERS | 535 | 9630 | 5 (0)] 00:00:01 |

Predicate Information (identified by operation id): NeW Unused h]nt]nfo Under
2 - access("C"."CUST_ID"="S"."CUST_ID") the p]an in 19¢ with
4 - filter("S"."TIME_ID"='30-DEC-99') DBMS XPLAN.DISPLAY CURSOR
5 - filter(("C"."CUST_CITY"='Los Angeles' AND "CUST — - J

int Report (identified by operation id / Query / Object Alias):)
otal hints for statement: 1 (U - Unused (1))~

4 - SEL$1 / S@SEL$1
U - USE NL(s) _J

33

How to use Optimizer hints

Example showing how hints are used

Hinted SQL statement with both join method and join order hints

SELECT /*+ ORDERED USE NL(s) */
c.cust name, sum (s.amount sold)

FROM customers c, sales s

WHERE c.cust 1id = s.cust_1id
AND c.cust city = ‘Los Angeles'’
AND c.cust province = ‘CA’

AND s.time 1id = ‘09-SEP-17"'

GROUP BY c.cust name;

. r 4 y
. yy Y & 4 _
_ | . Y g > & r'%/ y d /frl " 4 //A & < > 7

How to use Optimizer hints

Example showing how hints are used

Hinted plan
l.' ___
| Id | Operation | Mame | Rows | Bytes | Cost (ZCPU)I
| 0 | SELECT STATEMENT I I 1 | B4 | 292 (7)I
| 1| I I 1 | B4 | 292 (7}
| 2 | [NESTED LOOPS I I 41 2561 291 (6}l
|1* 3| TABLE ACCESS STORAGE FULL | CUSTOMERS | 31 1381 226 (3)]
| 4 | PARTITION RANGE SINGLE I I 1 | 18 | 22 (19)1
|1* 5 | TABLE ACCESS STORAGE FULL! SALES I 1 | 18 | 22 (19)1

How to use Optimizer hints

Guaranteeing the same plan every time
Partial hints can’t guarantee the same plan every time
Only way to guarantee the same plan every time is with a full outline

A full outline is a complete set of hints for all aspects of a plan

Full outline for a plan can be displayed using ‘“+outline’ option with FORMAT
parameter in DBMS XPLAN.DISPLAY CURSOR

SELECT * FROM
TABLE (DBMS XPLAN.display cursor(format=>'+outline’));

How to use Optimizer hints

Guaranteeing the same plan every time

SQL>[select * from table(dbms_xplan.display_cursor{format=>'TYPICAL +outline')}):|
PLAM_TABLE_OQUTPUT

SOL_ID fbyb04jd4qgpm8, child number 0

select e.,empno, e,ename from emp e where emphno <8000

Plan hash walue: 169057103

Id	Operation	Name	Rows	Bytes	Cost (ZCPU)I Time
0O	SELECT STATEMENT				2 {100}
1	TABLE ACCESS BY INDEX ROWIDI EMP	14	140	2 (0)1 00:00:01	
1* 2| INDE¥X RANGE SCAN | PK_EMP | 14 | | 1 (0)1 00300301 |
/Butline Data ™ Full outline for the plan
P

BEGIN_OUTLINE_DATA

IGNORE_OPTIM_EMBEDDED_HINTS
OPTIMIZER_FEATURES_EMARBLE('11.2,0.3")
DE_VERSION{'11.2,0.3")

ALL_ROWS

OUTLINE_LEAF{@"SEL$1")

INDEX_RS_ASC{R"SEL$1" "E"@"SEL$1" ("EMP","EMPNO"))
END_OUTLIMNE_DATA

I 4 7
_ = ¥ J 4 (&0 7 =
y - P BITIE IS = = >

How to use Optimizer hints

Guaranteeing the same plan every time

SOL> Select] 7%+
2 BEGIN_OUTLIME_DATA
3 IGNORE _OPTIM_EMBEDDED_HINTS

OPTIMIZER_FEATURES_ENABLE('11,2,0.3')
DE_VERSION('11,2,0.3") Cut and paste full J

4
g ALL_ROWS outline for the plan
7 OUTLINE_LEAF(@"SEL$1")
3
g
10

FULL{@"SEL$1" "E"@"SEL$1")
END_OUTLIMNE_DATA

o'd

11 e.empho, e,ename

12 From emp e
13 lWhere e,empno<8000:

Easier to maintain a full outline using SQL Plan Management

Program Agenda

39

SN O b~ W

What are hints?

How to use Optimizer hints
Useful Optimizer hints to know
Why are Optimizer hints ignored?
If you can hint it, baseline it

Managing an existing hinted application

Changing the Optimizer mode

The following hints control the Optimizer mode
* ALLL ROWS (default mode)
e FIRST ROWS(n)
* RULE

FIRST ROWS (n) choose plan that returns the first n rows most efficiently

« Use of old FIRST ROWS hintis not recommended
- Not fully cost based

RULE hint reverts back to Rule Based Optimizer (RBO)
* Not recommended as RBO is de-supported and severely limits plan options

‘ - &y 4 -

Changing the Optimizer mode

Default Optimizer mode example

45% of the rows in the employee table have department_id = 50
Default plan is a full table scan

SELECT e.emp id, e.last name, e.salary
FROM employees e
WHERE e.dept id = 50;

| Id | Operation | Name | Rows | Bytes | Cost (%CPU) |
| © | SELECT STATEMENT | | 45 | 855 | 3 (0)]
|* 1 | TABLE ACCESS FULL| EMPLOYEES | 45 | 855 | 3 (0)]

‘ - &y 4 -

Changing the Optimizer mode
FIRST_ROWS(n) hint example

SELECT /*+ FIRST ROWS(10) */
e.emp 1d, e.last name, e.salary
FROM employees e
WHERE e.dept id = 50;
Plan changed because the assumption is you are going to stop
fetching after first 10 rows

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|
| © | SELECT STATEMENT | | 18 | 190 | 2 (8)]
| 1| TABLE ACCESS BY INDEX ROWID| EMPLOYEES | 10 | 190 | 2 (8)]
| |

* 2| INDEX RANGE SCAN | EMP DEPARTMENT IX | | | 1 (0)

Changing the Optimizer mode
RULE hint

RULE hint specifies that the Rule Based Optimizer (RBO) be used
The RULE hint is not applicable if

» Other hints are specified in the stmt « Parallel execution is used
* One or more tables are partitioned « Grouping sets are used

* One or more IOTs are used « Group outer-join is used

* One or more Materialized views exist « A create table with a parallel clause

* A SAMPLE clauses is specified - Aleft or full outer join (ANSI) is specified
A spreadsheet clause is specified » Flashback cursor (AS OF) is used

I'4 v
- . Y & 4 V J 4 -
_ | . Y e & r'4/ & /fr,‘/ Y & -

Changing the Optimizer mode
Rule hint

RULE hint ignored when partitioned table is used

SELECT /*+ RULE */ count(*)
FROM sales s;

Id	Operation	Name	Rows	Cost (%CPU)	Time	Pstart	Pstop
©	SELECT STATEMENT			12 (100)			
1	SORT AGGREGATE		1				
2	PARTITION RANGE ALL		960	12 (0)	00:00:01	1	16
3	BITMAP CONVERSION COUNT		960	12 (0)	00:00:01		
4	BITMAP INDEX FULL SCAN	SALES CHANNEL BIX				1	16

RULE hint is ignored because SALES is a
partitioned table therefore CBO is used

. r 4 y
. yy Y & 4 _
_ | . Y g > & r'%/ y d /frl " 4 //A & < > 7

Changing the Optimizer mode
RULE hint

RULE hint prevents bitmap index being used and triggers full scan

SELECT /*+ RULE */ count(*)
FROM non partitioned sales s;

Id	Operation	Name
©	SELECT STATEMENT	
1	SORT AGGREGATE	
2	TABLE ACCESS FULL	NON PARTITIONED SALES

- rule based optimizer used (consider using cbo)

Changing initialization parameter for a query
OPT_PARAM hint

 Allows init.ora Optimizer parameters to be changed for a specific query
« Useful way to prevent setting non-default parameter value system-wide
* Only the following Optimizer influencing init.ora parameters can be set:

— OPTIMIZER_DYNAMIC_SAMPLING — STAR_TRANSFORMATION_ENABLED

— OPTIMIZER_INDEX_CACHING — PARALLEL_DEGREE_POLICY

— OPTIMIZER_INDEX_COST_ADJ — PARALLEL_DEGREE_LIMIT

— OPTIMIZER_USE_PENDING_STATISTICS — OPTIMIZER_ADAPTIVE_PLANS

— OPTIMIZER_USE_INVISIBLE_INDEXES - OPTIMIZER_ADAPTIVE_REPORTING_ONLY
- OPTIMIZER_SECURE_VIEW_MERGING - OPTIMIZER_ADAPTIVE_STATISTICS

— Optimizer related underscore parameters - OPTIMIZER_INMEMORY_AWARE

I 4 y
4 'Y I e
IIllllllllllllllllllii"' B -

Changing initialization parameter for a query
OPT_PARAM hint example

SOL> Select count(*)
2 From employees e
3 lhere e, job_id="SA_REP'
4 And {e,salary*e,commission_pct)*12 > 13000

COUNT(*) — _
Cardinality under-estimated due
S0L> to complex expression

SOL> select * from table(dbms_xplan,display_cursor()):
PLAN_TABLE_OUTPUT

Extended statistics would help

SOL_ID 4vfmg488y8q0w, child number 0

Select count(*) From employees e Where e, job_id='SA_REP' And
{e,salary*e,commission_pct)*12 > 13000

Plan hash value: 1756381138

| Id | Operation | Mame | Rows | B959/7 ost (ZCPUYI Time
|

| SELECT STATEMENT I I I 2 (100}
SORT AGGREGATE I | 1 22 | I
TABLE ACCESS STORAGE FULLI EMPLOYEES | 2]l 44 | 2 (0) 00300501

[0 I
I 11 I
* 21 I

Changing initialization parameter for a query

OPT_PARAM hint example

SOL> Select| /*+ OPT_PARAM('OPTIMIZER_USE_PENDING_STATISTICS' 'TRUE') */)count(*)

2 From employees e
3 lWhere e, job_id="SA_REP'
4 And (e.salary*e,commission_pct)*12 > 130003

COUNT(*)
(22]
SL>

S0L> select * from table(dbms_xplan,display_cursor{)):
PLAN_TABLE_OUTPUT

Create extended statistics & \

re-gather statistics as pending
statistics

SOL_ID 0Ob37sbu2rrixp, child number 1

Select /*+ OPT_PARAM('OPTIMIZER_USE_PENDING_STATISTICS' 'TRUE') */

count(*) From employees e lhere e, job_id="SA_REP' And
{e,salary*e,commission_pct)*12 > 13000

Plan hash value: 1756381138

OPT_PARAM hint enables
pending statistics for only this

Qtatement /

| Id | Operation | MName | Rows

| Bytes | Cost (ZCPUYI Time I

| SELECT STATEMENT | |

Il 0
I 1 1 SORT AGGREGATE | I 1
[* 2

*

2 (1001 I
I
| TARBLE ACCESS STORAGE FULLI EMPLOYEES |

I I
(0)1 00300301 |

Changing Optimizer features enable

This parameter gets it own hint

OPTIMIZER FEATURES ENABLE parameter allows you to switch between
optimizer versions

Setting it to previous database version reverts the Optimizer to that version
» Disables any functionality that was not present in that version

Easy way to work around unexpected behavior in a new release

Hint allows you to revert the Optimizer for just a single statement

d . » 4 - 2

Changing Optimizer features enable

Example

SOL> explain plan for
2 Select object_type, count(*)
3 From t
4 CGroup by object_type:

Explained,

SOL>
SOL> select * from table(dbms_xplan.display(format=>"'+outline')):

PLAN_TABLE_OUTPUT

Plan hash value: 47235625

| Id | Operation | Mame | Rows | Bytes | Cost (ZCPU)| Time I

0 | SELECT STATEMENT I I 43 | 430 | 212 (8)1 00:00:01 |
| 1 | (HASH GROUP BY | I I 43 | 490 | 212 (8)] 00:00:01 |
2 | TARBLE ACCESS STORAGE FULLI T | 88766 | 86BKI 201 (2)1 00:00:01 |

I 4 y
4 'Y I e
II.-"' B -

Changing Optimizer features enable

Example
SOL> explai for
2 Select| /*+ optimizer_features_enable('9,2,0") */]object_tupe, count.(*)
3 From t
4 Group by object_type:
— Hash GROUP BY introduced in)
S0L> 10g not an option for 9.2
SOL> select * from table(dbms_xplan,display(format=>'+outline' Optimizer, so traditional sort

PLAN_TABLE_OUTPUT based GROUP BY selected J

Plan hash value: 1476560607

Id | Operation

0 | SELECT STATEMENT
1 | [SORT GROUP BY
2 | TABLE ACCESS STORAGE FULLI T

ame | Rows | Bytes | Cost |

I 43 1 430 | 363 |
I I 43 | 430 | 363 |
| 88766 | 8BBKI 202 |

Program Agenda

52

SN O b~ W

What are hints?

How to use Optimizer hints
Useful Optimizer hints to know
Why are Optimizer hints ignored?
If you can hint it, baseline it

Managing an existing hinted application

Why are Optimizer hints ignored?
Syntax and Spelling

Which one of the following hints will trigger the pk_emp index to
be used in this query?

SELECT /*+ IND (e pk_emp)*/ * FROM employees e; x
SELECT /*+ INDEX (e emp_pk)*/ * FROM employees e; x

Y
) 4

SELECT /*+ INDEX(e pk emp)*/ * FROM employees e;

& 7
i TSI o s
_ B s

Why are Optimizer hints ignored?

Invalid hint

Specifying an index hint on a table with no indexes

SELECT |/*+ INDEX(p) */|Count(*)

FROM my_ promotions p Invalid hint because no indexes
WHERE promo category = TV exist on the table

AND promo begin date = '05-OCT-17";

| Id | operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| O | SELECT STATEMENT | | | | 3(ee| |

I
| 1| SORT AGGREGATE | |
I

* 2| [TABLE ACCESS FULL| MY PROMOTIONS) |

Why are Optimizer hints ignored?
lllegal hint

Specifying a hash join hint for non-equality join

SELECT |/*+ USE HASH(e s) */|e.first name, e.last name
FROM employees e, salary grade s

WHERE e.salary BETWEEN s.low sal AND s.high sal;

lllegal hint because a hash join

| Id | Operation | Name | Rows | Bytes | Cost (ZCPU)I ,)
— , | R ——— can’t be used for a non-equality
| (11 MNESTED LOOPS ! |11 451 4 (0] join predicate

I* "2 T TABLE ACCESS STORAGE FULLI SALARY GRADE | 11 261 2 (0}l

I* 3| TABLE ACCESS STORAGE FULLI EMPLOYEES | 11 131 2 (0}l

& 7
R fihe 0 gt L TRRUONS ISR B
Y ™ - 4 “ ol Y. Y Y A e 4

Why are Optimizer hints ignored?

Invalid hint combinations

Specifying a parallel hint for an index range scan

SELECT |/*+ index(e empno pk ind) parallel(e 8) */
e.empno, e.name

Invalid hint combination because an index
FROM employees e : |
range scan can't be parallelized on

WHERE e.empno < 7700; non-partitioned table

0 | SELECT STATEMENT | |
| 1 | TABLE ACCESS BY INDEX ROWID BATCHED| EMP I g8 | g0 |
2 | I

| INDEX RANGE SCAN] | EMPNO_PK IND

F 4 y
"'oY Iy
5 y DY &YV /
_ ; B s

Why are Optimizer hints ignored?

Invalid hint combinations

If two hints contradict each other, they will both be ignorec

SELECT |/#*+ full(e) index(e empno fk ind) */
e.empno, e.name

FROM employees e Conflicting hints you can’t do a

WHERE e.empno < 7700; full table scan and index lookup
___ on same table

0 | SELECT STATEMENT | | g8 |
1 | TABLE ACCESS BY INDEX ROWID BATCHED| EMP | g8 | g0 |
2 INDEX RANGE SCAN | EMPNO PK IND | g8 |

Why are Optimizer hints ignored?

Hint becomes invalid due to transformation

Ordered hint dictates the join order as the order of tables in FROM clause

SELECT |/*+ ordered */|el.last name,
j.Jjob title, el.salary, v.avg salary

FROM employees el, jobs j
(SELECT e2.dept id, avg(e2.salary) avg salary
FROM employees e2, departments d
WHERE d.location=1700 AND e2.depet id=d.dept id
ROUP BY e2.dept id

G.OU : e' .ep Tl)V /Expectedjoin order N

WHERE el.job 1d = j.job id
= = 1. Employees

AND el.dept 1d = v.dept id 2 Jobs
AND el.salary > a.avg salary 3V
ORDER BY el.last name; ¢ F)

& 7
R fihe 0 gt L TRRUONS ISR B
Y ™ - 4 “ ol Y. Y AW Ve 4

Why are Optimizer hints ignored?

Hint becomes invalid due to transformation View merging occurred) |
Order of tables in FROM clause
Actual join order used (e1jv)lost |
___ Optimizer picks join order with
| Id | Operation /

| O | SELECT STATEMENT I I
|* 1 | FILTER I I
| 2 | SO0RT GROUP BY l I
|* 3| HASH JOIN l I
| 4 | 4 TARELE ACCESS BY INDEX ROWIDI DEPARTHENTS l I
|* 5 | INDEX RANGE SCAN | DEPT_LOCATION_IX | 21 | I
* & | HASH JOIN I | 3236 | 244K
7 3 TABLE ACCESS STORAGE FULL | EMPLOYEES | 107 | 743 |
|* 8 | HASH JOIN I | 107 | 7383 |
| 91 1 TRELE ACCESS STORAGE FULLI EMPLOYEES | 107 | 3852 |
| 10 | 2 TABLE ACCESS STORAGE FULLI JOBS I 13 1 827 |

Why are Optimizer hints ignored?

Hint becomes invalid due to transformation

NO_MERGE hint prevents transformation from taking place

Preserves FROM clause order J

SELECT |/*+ no merge(v) ordered */
el.last name, j.Jjob title, el.salary, v.avg salary

FROM employees el, jobs j
(SELECT e2.dept id, avg(e2.salary) avg salary

FROM employees e2, departments d
WHERE d.location=1700 AND e2.depet id=d.dept id
GROUP BY e2.dept id)v

WHERE el.job id = j.job id

AND el.dept id = v.dept 1id

AND el.salary > a.avg salary

ORDER BY el.last name; ':I

" 4 y -
(57 'O Ty

Why are Optimizer hints ignored?

Hint becomes invalid due to transformation

Actual join order used

| Id | Operation | Name | Rows | Bytes |

I | SELECT STATEMENT |

| ! |

| | SORT ORDER BY | | 17 | 1139 |
I* 2 | HASH JOIN | | 17 | 1139 |
I* 3| _ HASH JOIN | | 107 | G457 |
| | 1 TABLE ACCESS STORAGE FULL | EMPLOYEES | 107 | 2568 |
| | 2 TABLE ACCESS STORAGE FULL | JOBS | 131 513 |
| | /ZVIEU | I 111 176
| | HASH GROUP BY | | 111 154 | _ _
| | NESTED LOOPS | | | I Inline View Vv
| | NESTED LOOPS | | 371 518 |
| | TRBLE ACCESS BY INDEX ROWIDI DEPARTHENTS | 41 28|
I* 11 | INDEX RANGE SCAM | DEPT_LOCATION_IX | 4 | |
I* 12 | INDEX RANGE SCAM | EMP_DEPARTHENT_IX | 10 |

| | |

TRELE ACCESS BY INDEX ROWID | EMPLOYEES 10

. D

Program Agenda

62

SN O b~ W

What are hints?

How to use Optimizer hints
Useful Optimizer hints to know
Why are Optimizer hints ignored?
If you can hint it, baseline it

Managing an existing hinted application

If you can hint it, baseline it

Alternative approach to hints

* |tis not always possible to add hints to third party applications
« Hints can be extremely difficult to manage over time
* Once added never removed

Solution
» Use SQL Plan Management (SPM)
* Influence the execution plan without adding hints directly to queries

« SPM available in Enterprise Edition*, no additional options required

If you can hint it, baseline it
SQL Plan Management

@ _m e ' . : I:j;:}/Plan Acceptable
A A -

User Parse SQL Generate Plan Execute Plan

SQL Management Base

Plan baseline]

1

| ACCEPTED UNACCEPTED !
1

NOTE:: Actual execution plans
stored in SQL plan baseline in
Oracle Database 12c

If you can hint it, baseline it
SQL Plan Management

| |
e NL
A EMP DEPT

User Parse SQL Generate Plan
|

SQL Management Base

Plan baseline]

1

| ACCEPTED UNACCEPTED !
1

NOTE:: You do not need to be in
auto-capture mode to have a
new plan added to an existing
SQL plan baseline

Additional fields such as
fetches, row processed etc. are
not populated because new

plan has never executed E

If you can hint it, baseline it
SQL Plan Management

n _“ G ' R : x:}{;}/Plan Acceptable
‘ ‘ i EMP DEPT

User Parse SQL Plan used Execute Plan

SQL Management Base

Plan baseline]
ACCEPTED UNACCEPTED |
1

—— e] -)

Influence execution plan without adding hints
Example Overview

Simple two table join between the SALES and PRODUCTS tables

SELECT p.prod name,SUM(s.amount sold)
FROM products p, sales s
WHERE p.prod id = s.prod id

AND p.supplier id = :sup id

GROUP BY p.prod name;
| |

TABLE ACCESS | TABLE ACCESS
l PRODUCTS l SALES

| GROUPBY

Current Plan

Influence execution plan without adding hints

Example Overview

Simple two table join between the SALES and PRODUCTS tables

SELECT p.prod name,SUM(s.amount sold)
FROM products p, sales s
WHERE p.prod id = s.prod id

AND p.supplier id = :sup id

GROUP BY p.prod name;
| |

INDEX RANGE SCAN | TABLE ACCESS
PROD_SUPP_ID_INDX l SALES

| GROUPBY

Desired Plan

Influence execution plan without adding hints
Step 1. Execute the non-hinted SQL statement

SELECT p.prod name,SUM(s.amount sold)
FROM products p, sales s

WHERE p.prod id = s.prod id

AND p.supplier id = :sup id

GROUP BY p.prod name;

PROD NAME SUM(S.AMOUNT SOLD)

Baseball trouser Kids 91
Short Sleeve Rayon Printed Shirt $8.99 32

3 - : N\ —— a7 2 4 4 ” 4 s, 7 N
. | [\ o [/717 17 e

Influence execution plan without adding hints

Default plan uses full table scans followed by a hash join

PLAN TABLE OUTPUT

SELECT p.prod name, sum(s.amount sold) FROM products p , sales s
WHERE p.prod id = s.prod id AND p.supplier id = :sup id GROUP BY
p.prod name

Plan hash value: 3535171836

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|
| © | SELECT STATEMENT | | | | 15 (100) |
| 1| HASH GROUP BY | | 2 | 90 | 15 (7)]
|* 2| HASH JOIN | | 3| 135 | 14 (0)]
|* 3| TABLE ACCESS FULL | PRODUCTS | 2 | 72 | 9 (0)]
| 4| PARTITION RANGE ALL| | 960 | 8640 | 5 (0)]
| 5| TABLE ACCESS FULL | SALES | 960 | 8640 | 5 (0)]

2 - access("P"."PROD ID"="S"."PROD ID")
3 - filter("P"."SUPPLIER ID"=:SUP ID)

d - &y 4 -

Influence execution plan without adding hints
Step 2. Find the SQL_ID for the non-hinted statement in V$SQL

SELECT sql id,
sql fulltext

FROM vSsql
WHERE sqgl text LIKE 'SELECT p.prod name, %

SQL ID SQL FULLTEXT

@kuntdurat7yr]SELECT p.prod name, SUM(s.amount sold)
FROM products p , sales s
WHERE p.prod

F 4 y
. VOV T o
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIl.-F" B -

Influence execution plan without adding hints
Step 3. Create a SQL plan baseline for the non-hinted SQL statement

VARIABLE cnt NUMBER

EXECUTE :cnt := dbms_spm.load_plans_from_cursor_cache{sql_id=>'akuntdurat7yr'ﬂ;

PL/SQL PROCEDURE successfully completed.

SELECT sgl handle, sqgl text, plan name, enabled

FROM dba sgl plan baselines

WHERE sqgl text LIKE 'SELECT p.prod name, %'

SQL_HANDLE SQL_TEXT PLAN NAME ENA

| SOL_8f876d84821398cf| SELECT p.prod name, sum(s.amount sold) SQL PLAN 8zlvdhk1176
FROM products p , sales s g42949306

r 7
i 'O Ty z
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII.-F" B s

Influence execution plan without adding hints
Step 4. Disable plan in SQL plan baseline for the non-hinted SQL statement

EXECUTE :cnt :=[dbms_spm.alter_sql_plan_baselineasql_handle:>%xntﬁf876d84821398cf'f-

plan name=>'SQL PLAN 8z1lvdhk11766g42949306', -
attribute name => 'enabled’, -
attribute value => 'NO');

PL/SQL PROCEDURE successfully completed.

SELECT sgl handle, sqgl text, plan name, enabled
FROM dba sgl plan baselines

WHERE sqgl text LIKE 'SELECT p.prod name, %'
SQL_HANDLE SQL_TEXT PLAN NAME ENA

(SQL 8f876d84821398cf |SELECT p.prod name, sum(s.amount sold) SQL PLAN 8zlvdhk1176 | NO
FROM products p , sales s g42949306

& 7
L ke 0 &t L TR RS B
A = o YN T VS

Influence execution plan without adding hints
Step 5. Manually modify the SQL statement to use the hint(s) & execute it

SELECT /#*+ index(p) */ p.prod name,SUM(s.amount sold)

FROM products p, sales s
WHERE p.prod id = s.prod id

AND p.supplier id = :sup_ 1id

GROUP BY p.prod name;

PROD NAME SUM(S.AMOUNT SOLD)
Baseball trouser Kids 91

Short Sleeve Rayon Printed Shirt $8.99 32

. r 4 y
. yy Y & 4 _
_ | . Y g > & r'%/ y d /frl " 4 //A & < > 7

Influence execution plan without adding hints
Step 6. Find SQL_ID & PLAN_HASH_VALUE for hinted SQL stmt in V$SQL

SELECT sqgl id, plan hash value, sqgl fulltext

FROM vSsql
WHERE sgl text LIKE 'SELECT /*+ index(p) */ p.prod name, %';

SQL ID PLAN HASH VLAUE SQL FULLTEXT

lavphOnng5pfc2 2567686925 | SELECT /*+ index(p) */ p.prod name,
SUM(s.amount sold) FROM products p,

sales

gy y r
(57 VO Ty
_ . S NI/ —

Influence execution plan without adding hints
Step 7. Associate hinted plan with original SQL stmt’s SQL HANDLE

VARIABLE cnt NUMBER

EXECUTE :cnt :=[dbms spm.load plans from cursor cache}sql_id=>'avphOnnquch’,—
plan hash value=>'2567686925"', -

sgl handle=>'SQL 8f876d84821398cf’);

PL/SQL PROCEDURE successfully completed.

SQL_ID & PLAN_HASH_VALUE belong to hinted

statement
SQL_HANDLE is for the non-hinted statement

Influence execution plan without adding hints
Step 8. Confirm SQL statement has two plans in its SQL plan baseline

SELECT sgl handle, sgl text, plan name, enabled
FROM dba sgl plan baselines

WHERE sqgl text LIKE 'SELECT p.prod name,
SQL_ HANDLE SQL_TEXT PLAN NAME ENA

SQL 8f876d84821398cf SELECT p.prod name, sum(s.amount sold) SQL PLAN 8zlvdhkl1l76 NO
FROM products p , sales s g42949306

o©
-

SQOL 8f876d84821398cf SELECT p.prod name, sum(s.amount sold)| SQL PLAN 8zlvdhkl1l76 YES
FROM products p , sales s 6gelc67£67

Hinted plan is the only enabled
plan for non-hinted SQL statement

N W —a = y y P e /Y
A\ B S W Y e ,li;"" /‘f VP& — 7 XA

Influence execution plan without adding hints
Step 9. Confirm hinted plan is being used

PLAN TABLE OUTPUT

..................................... Non-hinted SQL text but it

SELECT p.prod name, sum(s.amount sold) FROM products p , sales s

WHERE p.prod id = s.prod id AND p.supplier id = :sup id GROUP BY if; [jf;if]g; tf](; [)IEir] f]gﬂf;r]
p.prod name .

value for the hinted
Plan hash value: 2567686925]

Kstatement J

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

| @ | SELECT STATEMENT | | | | 8 (100)]
| 1| HASH GROUP BY | | 2| 90 | 8 (13)]
|* 2| HASH JOIN | | 3] 135 | 7 (0)]
|* 3| INDEX RANGE SCAN | PROD SUPP ID INDEX | 2| 72| 2 (0)]
| 4| PARTITION RANGE ALL| | 960 | 8640 | 5 (0)]
| 5| TABLE ACCESS FULL | SALES | 960 | 8640 | 5 (0)]

Note section also confirms
SQL plan baseline used for
statement

2 - access("P"."PROD ID"="S"."PROD ID")
3 - access("P"."SUPPLIER ID"=:SUP ID)

Note

[SQL plan baseline SQL PLAN 8z1vdhk117669elc67f67 used for this statement]

Program Agenda

79

SN O b~ W

What are hints?

How to use Optimizer hints
Useful Optimizer hints to know
Why are Optimizer hints ignored?
If you can hint it, baseline it

Managing an existing hinted application

Managing an existing hinted application

SQL Performance Analyzer

g

Establish baseline Set underscore
parameter B

G _OPTIMIZER_IGNORE_HINTS ——nE

Execute @ 8% DR R Execute
workload 2 workload
B

Compare SQL
performance

S

\V\.‘/

Managing an existing hinted application

SQL Performance Analyzer Task Result: SYS.UPGRADE_10G11G
Task Name UPGRADE_10G11G SQL Tuning Set Name OOV 546
Task Owner SYS STS Owner SYS
Task Description ;‘fgt upgrade to Total SQL Statements 54
SQL Statements With 0
Errors
Global Statistics

Projected Workload Buffer Gets SQL Statement Count

~
w

80,000,000

P s
3 60,000,000 5 S0 ‘ @
é 40,000,000 2 25 i
g 20,000,000 “ 0
0 Improved Regressed Unchanged
Change in Buffer Gets
W 10g.data W 11¢9.data @ PlanChanged @8 Plan Unchanget

O
O

Improvement Impact 24
Regression Impact -2

Overall Impact 22, ©

Top 10 SQL Statements Based on Impact on Workload

Net Impact on Buffer Gets
SQLID Workload (% 10g_data 11g_data
¢ g4dzf4ak4rus2 12.000/20,318,458.000 13,502,097.000
¢ afacm5ir3rz9j 11.990| 6,990,541.000 180,401.000
& 2ny751aat2vd9 -0.820(12,973,052.000 13,440,825.000
& c2fbOug5p7d4p -0.750/12,740,524.000 13,165,998.000
o 2wtgxbijz6u2by 0.050, 244,678.000 218,533.000

Net Impact on

Replay Trial 1 10g_data
Replay Trial 2 11g_data

Comparison Metric Buffer Gets

Recommendations

Oracle offers two options to fix regressed
SQL resulting from plan changes:

ution plan

ating

om SQ rial 1 by
SQL Plan Baselines.

Create SOL Plan Baselines)

Explore alternate execution
plans using SQL Tuning
Advisor,

Run SQL Tuning Adwsor)

%o of Workload Plan
SQL (%) 10g_data 11g_data Changed

33,550 35780 30.670Y
97420 12.310 0.410Y
-3610 22850 30.530Y
-3.3490 22440 29.910Y
10.690 0.430 0.500Y

Summary

Optimizer hints should only be used with extreme caution

« Exhaust all other tuning mechanisms first
- Statistics, SQL Tuning Advisor, etc.

To guarantee the same plan every time supply a complete outline
» Easier to do this with SQL Plan Management

Hints live forever!

Use OPTIMIZER IGNORE HINTS parameter to test query performance
without hints

@/ SOLMaria.

Join the Conversation Related White Papers

ttps://twitter.com/SQLMaria « What to expect from the Optimizer in 12¢

nttps://blogs.oracle.com/optimizer/« What to expect from the Optimizer in 11g
https://sglmaria.com

nttps://www.facebook.com/SQLMaria

B EE O

83

http://www.oracle.com/technetwork/database/bi-datawarehousing/twp-optimizer-with-oracledb-12c-1963236.pdf
http://www.oracle.com/technetwork/database/focus-areas/bi-datawarehousing/twp-upgrading-10g-to-11g-what-to-ex-133707.pdf

ORACLE

