
Master Product Manager
Mission Critical Database Technologies
January 2020

Maria Colgan

Harnessing the Power of Optimizer Hints

@SQLMaria

The following is intended to outline our general product direction. It is intended for information
purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any
material, code, or functionality, and should not be relied upon in making purchasing decisions. The
development, release, timing, and pricing of any features or functionality described for Oracle’s
products may change and remains at the sole discretion of Oracle Corporation.

Safe harbor statement

2

This session will not instantly make you an Optimizer hint expert!
Adding hints won’t magically improve every query you encounter

Expectations
Harnessing the power of Optimizer hints

Optimizer hints should only be used with extreme care

4

5

4

3

2

1 What are hints?

How to use Optimizer hints

Useful Optimizer hints to know

Why are Optimizer hints ignored?

If you can hint it, baseline it

Managing an existing hinted application

Program Agenda

5

6

6

• Hints allow you to influence the Optimizer when it has to choose between
several possibilities

• A hint is a directive that will be followed when applicable

• Can influence everything from Optimizer mode to every operation in plan

• Automatically means the Cost Based Optimizer will be used
• Only exception is the RULE hint, but it must be used alone

Overview
What are hints?

Example - directions to the mall
What are hints?

Should I walk or drive to the mall?
• Best plan would be to walk

Should I go up 4th, 5th, or 6th street?
• Best plan would be to go up 4th street

Should I go in the front or the back door of the mall?
• Best plan would be to go in the back door

Telling me the cheapest parking is at 5th and Mission garage is
irrelevant since I decided to walk

Hints only evaluated when they apply to a decision that has to be made
What are hints?

Optimizer Hints

8

Two different classes of hints

Non-Optimizer Hints

HINTS

The hint mechanism is not exclusively used by the Optimizer
Several other functional areas use hints too

• Direct path load can be controlled by APPEND hint

• Parallel statement queuing can be controlled by STATEMENT_QUEUING hint

• Data management in buffer cache can be influenced by CACHE hint

• What SQL statements get monitored by SQL Monitor can be controlled by
MONITOR hint

• Use of In-Memory column store can be controlled by INMEMORY hint

• Take advantage of new fast ingest for IoT controlled by MEMOPTIMIZE_WRITE

Overview
Not all hints influence the Optimizer

SELECT /*+ GATHER_PLAN_STATISTICS*/

p.prod_name,
SUM(s.quantity_sold)

FROM Products p, Sales s

WHERE s.prod_id = p.prod_id

GROUP BY p.prod_name;

GATHER_PLAN_STATISTICS hint
Checking cardinality estimates

SELECT * FROM table(
DBMS_XPLAN.DISPLAY_CURSOR(FORMAT=>'ALLSTATS LAST’));

GATHER_PLAN_STATISTICS hint
Checking cardinality estimates

• Compare estimated rows returned for each operation in plan to
actual rows returned

• A-Time allows you to see where the time is spent

SELECT /*+ MONITOR*/ CUST_LASTNAME, SUM(AMOUNT_SOLD)

FROM Customers c, Sales s

WHERE s.cust_id = c.cust_id …

MONITOR hint
Checking cardinality estimates

• Compare estimated rows
returned for each
operation in plan to actual
rows returned

• Timeline allows you to see
where the time is spent

Optimizer Hints

13

Two different classes of hints

Non-Optimizer Hints

HINTS

Inside the Oracle Optimizer

Query Transformation
Rewrite query text to allow it to be processed

more efficiently

Plan Generator
Multiple plans are generated for

each SQL, using different access
paths and join types. Each plan is
costed and plan with the lowest
cost is used.

Cost Estimator
Cost is an estimate of the amount of

CPU and the number of disk I/Os, used
to perform an operation

Statistics
Schema definitions

First thing the Optimizer does is try to transform (rewrite) your statement
• The goal is to allow additional access or join methods and join orders to be used

Some transformations are always done but some are cost-based
Hints can be used to influence the transformations the Optimizer does

Overview
Hints influencing Query Transformations

• REWRITE
• STAR_TRANSFORMATION

• UNNEST

• NO_QUERY_TRANSFORMATION
• MERGE

• USE_CONCAT

Most hints have corresponding negative hint preceded by word ‘NO_’
More information on hints can be found in chapter 3 of SQL Reference
Guide & chapter 19 of the SQL Tuning Guide

Overview
Hints can also influence all aspects of a plan

Hints to influence cardinality
DYNAMIC_SAMPLING

CARDINALITY

Hints to influence join methods
USE_NL_WITH_INDEX

USE_HASH

Hints to influence access paths
FULL

INDEX

Hints to influence join order
LEADING

ORDERED

http://docs.oracle.com/cd/B28359_01/server.111/b28286/sql_elements006.htm
https://docs.oracle.com/database/122/TGSQL/influencing-the-optimizer.htm%2523TGSQL246

Single-table - hints that are specified on one table or view

• FULL , INDEX or USE_NL

Multi-table - hint that can be specified on one or more tables or views

• LEADING or ORDERED

Query block - hints that operate on single query blocks

• STAR_TRANSFORMATION or UNNEST

Statement – hints that apply to the entire SQL statement

• ALL_ROWS or OPTIMIZER_FEATURES_ENABLE

Overview
Hints Classifications

18

5

4

3

2

1 What are hints?

How to use Optimizer hints

Useful Optimizer hints to know

Why are Optimizer hints ignored?

If you can hint it, baseline it

Managing an existing hinted application

Program Agenda

5

6

6

Hints are inserted in a SQL statement in the form of a comment with an
additional + sign

They go immediately after the keyword (SELECT, INSERT, etc)

SELECT /* This is a comment */ count(*) FROM Sales;

SELECT /*+ This is a hint */ count(*) FROM Sales;

Overview
How to use Optimizer hints

Hint syntax is correct, but it is not a valid hint so is treated as
comment

Hints and comments can be combined
But best practice is to keep comment and hints in different blocks

• Comments can be put anywhere in a SQL statement not just after keyword

SELECT /*+ FULL(s) and a comment*/ count(*) FROM Sales s;

SELECT /*+ This_is_a_comment FULL(s) */ count(*) FROM Sales s;

Overview
How to use Optimizer hints

SELECT /*+ FULL(s)*/ count(*) FROM Sales s /* comment */;

Which one of the following hints will trigger the pk_emp index to be used in
this query?

SELECT /*+ index(scott.emp pk_emp)*/ * FROM emp e;

SELECT /*+ index(emp pk_emp)*/ * FROM emp e;

SELECT /*+ index(pk_emp)*/ * FROM emp e;

Correctly identifying the object in the hint
How to use Optimizer hints

None of them

If you use a table alias in the query than you must specify the table alias name
in the hint

Otherwise the hint is not valid

SELECT /*+ index(e pk_emp)*/ * FROM emp e;

Correctly identifying the object in the hint
How to use Optimizer hints

SELECT /*+ FULL(e) FULL(d) */ e.last_name, e.dept_id
FROM employees e
WHERE e.dept_id in (SELECT d.dept_id

FROM departments d
WHERE d.location_id=51);

Hints only apply to the query block in which they appear
How to use Optimizer hints

The dept table only appears
in the sub-query, which is
treated as separate query
block.
Hint has no effect.

SELECT /*+ FULL(e) */ e.last_name, e.dept_id
FROM employees e
WHERE e.dept_id in (SELECT /*+ FULL(d) */ d.dept_id

FROM departments d
WHERE d.location_id=51);

Hints only apply to the query block in which they appear
How to use Optimizer hints

Only exception are statement level hints

The hint on dept now has an
effect as it appears in the
correct query block, the sub-
query

Oracle automatically names each query block in a SQL statement

• sel$1, ins$2, upd$3, del$4, cri$5, mrg$6, set$7, misc$8

• Displayed using ‘+alias’ format parameter in DBMS_XPLAN procedures

Query block names can be used to specify which block a hint applies to

• /*+ FULL(@SEL$2 D) */
The QB_NAME hint can be used to explicitly labels each query block

• /*+ QB_NAME(my_name_for_block) */

Query block names
How to use Optimizer hints

SELECT /*+ FULL(e) FULL(@MY_SUBQ d) */
e.last_name, e.dept_id

FROM employees e
WHERE e.dept_id in (SELECT /*+ QB_NAME(MY_SUBQ) */

d.dept_id
FROM departments d
WHERE d.location_id=51);

Query block names
How to use Optimizer hints

Any valid hint will be used
Can check if a hint is valid in hint section of 10053 trace

How do I know if my hints are used or not?
How to use Optimizer hints

ERR indicates if there
is an error with hint

USED indicates the hint was used during
the evaluation of the part of the plan it

pertains to
Doesn’t mean the final plan will reflect it

Example showing how hints are used
How to use Optimizer hints

SQL Statement
SELECT c.cust_name, sum (s.amount_sold)
FROM customers c, sales s
WHERE c.cust_id = s.cust_id

AND c.cust_city = ‘Los Angeles’

AND c.cust_province = ‘CA’

AND s.time_id = ‘09-SEP-18’

GROUP BY c.cust_name;

Default plan is a hash join between sales and customers

Example showing how hints are used
How to use Optimizer hints

But we want the query to use a nested loops join

Hinted SQL statement
SELECT /*+ USE_NL(s) */

c.cust_name, sum (s.amount_sold)
FROM customers c, sales s
WHERE c.cust_id = s.cust_id
AND c.cust_city = ‘Los Angeles’
AND c.cust_province = ‘CA’
AND s.time_id = ‘09-SEP-18’
GROUP BY c.cust_name;

Example showing how hints are used
How to use Optimizer hints

Even with the hint we still get a hash join plan

Example showing how hints are used
How to use Optimizer hints

Why did it not use the hint?

Let's look in the 10053 trace file

Hint is valid and was used

Why did it not change the plan?

We only hinted the join method we didn’t hint the join order

Hint only valid when sales is on right side

Hint considered ONLY when join order was customers, sales

Example showing how hints are used
How to use Optimizer hints

33

Example showing how hints are used
How to use Optimizer hints

New Unused hint info under
the plan in 19c with

DBMS_XPLAN.DISPLAY_CURSOR

1
4
3
535
535

64
256
138
9630
9630

Hinted SQL statement with both join method and join order hints
SELECT /*+ ORDERED USE_NL(s) */

c.cust_name, sum (s.amount_sold)
FROM customers c, sales s
WHERE c.cust_id = s.cust_id
AND c.cust_city = ‘Los Angeles’
AND c.cust_province = ‘CA’
AND s.time_id = ‘09-SEP-17’
GROUP BY c.cust_name;

Example showing how hints are used
How to use Optimizer hints

Hinted plan

Example showing how hints are used
How to use Optimizer hints

Partial hints can’t guarantee the same plan every time

Only way to guarantee the same plan every time is with a full outline

A full outline is a complete set of hints for all aspects of a plan

Full outline for a plan can be displayed using ‘+outline’ option with FORMAT
parameter in DBMS_XPLAN.DISPLAY_CURSOR

SELECT * FROM

TABLE(DBMS_XPLAN.display_cursor(format=>’+outline'));

Guaranteeing the same plan every time
How to use Optimizer hints

Guaranteeing the same plan every time
How to use Optimizer hints

Full outline for the plan

Guaranteeing the same plan every time
How to use Optimizer hints

Cut and paste full
outline for the plan

Easier to maintain a full outline using SQL Plan Management

39

5

4

3

2

1 What are hints?

How to use Optimizer hints

Useful Optimizer hints to know

Why are Optimizer hints ignored?

If you can hint it, baseline it

Managing an existing hinted application

Program Agenda

5

6

6

The following hints control the Optimizer mode
• ALL_ROWS (default mode)
• FIRST_ROWS(n)
• RULE

FIRST_ROWS(n) choose plan that returns the first n rows most efficiently
• Use of old FIRST_ROWS hint is not recommended

- Not fully cost based

RULE hint reverts back to Rule Based Optimizer (RBO)
• Not recommended as RBO is de-supported and severely limits plan options

Changing the Optimizer mode

45% of the rows in the employee table have department_id = 50
Default plan is a full table scan

SELECT e.emp_id, e.last_name, e.salary
FROM employees e
WHERE e.dept_id = 50;

Default Optimizer mode example
Changing the Optimizer mode

SELECT /*+ FIRST_ROWS(10) */
e.emp_id, e.last_name, e.salary

FROM employees e
WHERE e.dept_id = 50;
Plan changed because the assumption is you are going to stop
fetching after first 10 rows

FIRST_ROWS(n) hint example
Changing the Optimizer mode

RULE hint specifies that the Rule Based Optimizer (RBO) be used

The RULE hint is not applicable if
• Other hints are specified in the stmt
• One or more tables are partitioned
• One or more IOTs are used
• One or more Materialized views exist
• A SAMPLE clauses is specified
• A spreadsheet clause is specified

RULE hint
Changing the Optimizer mode

• Parallel execution is used
• Grouping sets are used
• Group outer-join is used
• A create table with a parallel clause
• A left or full outer join (ANSI) is specified
• Flashback cursor (AS OF) is used
• ……….

RULE hint ignored when partitioned table is used
SELECT /*+ RULE */ count(*)
FROM sales s;

Rule hint
Changing the Optimizer mode

RULE hint is ignored because SALES is a
partitioned table therefore CBO is used

RULE hint prevents bitmap index being used and triggers full scan
SELECT /*+ RULE */ count(*)
FROM non_partitioned_sales s;

RULE hint
Changing the Optimizer mode

• Allows init.ora Optimizer parameters to be changed for a specific query
• Useful way to prevent setting non-default parameter value system-wide
• Only the following Optimizer influencing init.ora parameters can be set:

OPT_PARAM hint
Changing initialization parameter for a query

- OPTIMIZER_DYNAMIC_SAMPLING

- OPTIMIZER_INDEX_CACHING

- OPTIMIZER_INDEX_COST_ADJ

- OPTIMIZER_USE_PENDING_STATISTICS

- OPTIMIZER_USE_INVISIBLE_INDEXES

- OPTIMIZER_SECURE_VIEW_MERGING

- Optimizer related underscore parameters

- STAR_TRANSFORMATION_ENABLED

- PARALLEL_DEGREE_POLICY

- PARALLEL_DEGREE_LIMIT

- OPTIMIZER_ADAPTIVE_PLANS

- OPTIMIZER_ADAPTIVE_REPORTING_ONLY

- OPTIMIZER_ADAPTIVE_STATISTICS

- OPTIMIZER_INMEMORY_AWARE

OPT_PARAM hint example
Changing initialization parameter for a query

Cardinality under-estimated due
to complex expression
Extended statistics would help

OPT_PARAM hint example
Changing initialization parameter for a query

Create extended statistics &
re-gather statistics as pending
statistics
OPT_PARAM hint enables
pending statistics for only this
statement

OPTIMIZER_FEATURES_ENABLE parameter allows you to switch between
optimizer versions

Setting it to previous database version reverts the Optimizer to that version

• Disables any functionality that was not present in that version

Easy way to work around unexpected behavior in a new release

Hint allows you to revert the Optimizer for just a single statement

This parameter gets it own hint
Changing Optimizer features enable

Example
Changing Optimizer features enable

Example
Changing Optimizer features enable

Hash GROUP BY introduced in
10g not an option for 9.2
Optimizer, so traditional sort
based GROUP BY selected

52

5

4

3

2

1 What are hints?

How to use Optimizer hints

Useful Optimizer hints to know

Why are Optimizer hints ignored?

If you can hint it, baseline it

Managing an existing hinted application

Program Agenda

5

6

6

Which one of the following hints will trigger the pk_emp index to
be used in this query?

SELECT /*+ IND(e pk_emp)*/ * FROM employees e;

SELECT /*+ INDEX(e emp_pk)*/ * FROM employees e;

SELECT /*+ INDEX(e pk_emp)*/ * FROM employees e;

Syntax and Spelling
Why are Optimizer hints ignored?

Specifying an index hint on a table with no indexes

SELECT /*+ INDEX(p) */ Count(*)
FROM my_promotions p
WHERE promo_category = 'TV'
AND promo_begin_date = '05-OCT-17’;

Invalid hint
Why are Optimizer hints ignored?

Invalid hint because no indexes
exist on the table

Specifying a hash join hint for non-equality join

SELECT /*+ USE_HASH(e s) */ e.first_name, e.last_name
FROM employees e, salary_grade s
WHERE e.salary BETWEEN s.low_sal AND s.high_sal;

Illegal hint
Why are Optimizer hints ignored?

Illegal hint because a hash join
can’t be used for a non-equality
join predicate

Specifying a parallel hint for an index range scan

SELECT /*+ index(e empno_pk_ind) parallel(e 8) */
e.empno, e.name

FROM employees e
WHERE e.empno < 7700;

Invalid hint combinations
Why are Optimizer hints ignored?

Invalid hint combination because an index
range scan can’t be parallelized on
non-partitioned table

If two hints contradict each other, they will both be ignored

SELECT /*+ full(e) index(e empno_fk_ind) */
e.empno, e.name

FROM employees e
WHERE e.empno < 7700;

Invalid hint combinations
Why are Optimizer hints ignored?

Conflicting hints you can’t do a
full table scan and index lookup
on same table

Ordered hint dictates the join order as the order of tables in FROM clause

SELECT /*+ ordered */ e1.last_name,
j.job_title, e1.salary, v.avg_salary
FROM employees e1, jobs j

(SELECT e2.dept_id, avg(e2.salary) avg_salary
FROM employees e2, departments d
WHERE d.location=1700 AND e2.depet_id=d.dept_id
GROUP BY e2.dept_id)v

WHERE e1.job_id = j.job_id
AND e1.dept_id = v.dept_id
AND e1.salary > a.avg_salary
ORDER BY e1.last_name;

Hint becomes invalid due to transformation
Why are Optimizer hints ignored?

Expected join order
1. Employees
2. Jobs
3. V

Actual join order used

Hint becomes invalid due to transformation
Why are Optimizer hints ignored?

1

3

2

View merging occurred
Order of tables in FROM clause
(e1,j,v) lost
Optimizer picks join order with
lowest cost

4

NO_MERGE hint prevents transformation from taking place

SELECT /*+ no_merge(v) ordered */
e1.last_name, j.job_title, e1.salary, v.avg_salary

FROM employees e1, jobs j
(SELECT e2.dept_id, avg(e2.salary) avg_salary
FROM employees e2, departments d
WHERE d.location=1700 AND e2.depet_id=d.dept_id
GROUP BY e2.dept_id)v

WHERE e1.job_id = j.job_id
AND e1.dept_id = v.dept_id
AND e1.salary > a.avg_salary
ORDER BY e1.last_name;

Hint becomes invalid due to transformation
Why are Optimizer hints ignored?

Preserves FROM clause order

Actual join order used

Hint becomes invalid due to transformation
Why are Optimizer hints ignored?

Inline View v

1
2
3

62

5

4

3

2

1 What are hints?

How to use Optimizer hints

Useful Optimizer hints to know

Why are Optimizer hints ignored?

If you can hint it, baseline it

Managing an existing hinted application

Program Agenda

5

6

6

• It is not always possible to add hints to third party applications
• Hints can be extremely difficult to manage over time
• Once added never removed

Alternative approach to hints
If you can hint it, baseline it

Solution
• Use SQL Plan Management (SPM)

• Influence the execution plan without adding hints directly to queries

• SPM available in Enterprise Edition*, no additional options required

SQL Plan Management
If you can hint it, baseline it

User

Plan baseline

Execute Plan

Plan Acceptable

NOTE:: Actual execution plans
stored in SQL plan baseline in
Oracle Database 12c

SQL Management Base

Parse SQL Generate Plan

ACCEPTED UNACCEPTED

SQL Plan Management
If you can hint it, baseline it

NOTE:: You do not need to be in
auto-capture mode to have a
new plan added to an existing
SQL plan baseline

Additional fields such as
fetches, row processed etc. are
not populated because new
plan has never executed

User Parse SQL Generate Plan

Plan baseline

SQL Management Base

ACCEPTED UNACCEPTED

SQL Plan Management
If you can hint it, baseline it

User Parse SQL Plan used

Plan baseline

SQL Management Base

ACCEPTED UNACCEPTED

Execute Plan

Plan Acceptable

Simple two table join between the SALES and PRODUCTS tables

SELECT p.prod_name,SUM(s.amount_sold)
FROM products p, sales s
WHERE p.prod_id = s.prod_id
AND p.supplier_id = :sup_id
GROUP BY p.prod_name;

Example Overview
Influence execution plan without adding hints

Current Plan

GROUP BY

HASH JOIN

TABLE ACCESS
SALES

TABLE ACCESS
PRODUCTS

Simple two table join between the SALES and PRODUCTS tables

SELECT p.prod_name,SUM(s.amount_sold)
FROM products p, sales s
WHERE p.prod_id = s.prod_id
AND p.supplier_id = :sup_id
GROUP BY p.prod_name;

Example Overview
Influence execution plan without adding hints

GROUP BY

HASH JOIN

INDEX RANGE SCAN
PROD_SUPP_ID_INDX

TABLE ACCESS
SALES

Desired Plan

SELECT p.prod_name,SUM(s.amount_sold)
FROM products p, sales s
WHERE p.prod_id = s.prod_id
AND p.supplier_id = :sup_id
GROUP BY p.prod_name;

PROD_NAME SUM(S.AMOUNT_SOLD)
--------------------------------------- ------------------
Baseball trouser Kids 91
Short Sleeve Rayon Printed Shirt $8.99 32

Step 1. Execute the non-hinted SQL statement
Influence execution plan without adding hints

Default plan uses full table scans followed by a hash join
Influence execution plan without adding hints

SELECT sql_id,
sql_fulltext

FROM v$sql
WHERE sql_text LIKE 'SELECT p.prod_name, %';

SQL_ID SQL_FULLTEXT
------------- --
akuntdurat7yr SELECT p.prod_name, SUM(s.amount_sold)

FROM products p , sales s
WHERE p.prod

Step 2. Find the SQL_ID for the non-hinted statement in V$SQL
Influence execution plan without adding hints

VARIABLE cnt NUMBER

EXECUTE :cnt := dbms_spm.load_plans_from_cursor_cache(sql_id=>'akuntdurat7yr');

PL/SQL PROCEDURE successfully completed.

SELECT sql_handle, sql_text, plan_name, enabled

FROM dba_sql_plan_baselines

WHERE sql_text LIKE 'SELECT p.prod_name, %';

SQL_HANDLE SQL_TEXT PLAN_NAME ENA

------------------ --------------------------------------- -------------------- ---

SQL_8f876d84821398cf SELECT p.prod_name, sum(s.amount_sold) SQL_PLAN_8z1vdhk1176 YES
FROM products p , sales s g42949306

Step 3. Create a SQL plan baseline for the non-hinted SQL statement
Influence execution plan without adding hints

EXECUTE :cnt := dbms_spm.alter_sql_plan_baseline(sql_handle=>'SQL_8f876d84821398cf’,-

plan_name=>'SQL_PLAN_8z1vdhk11766g42949306',-
attribute_name => 'enabled’, -
attribute_value => 'NO');

PL/SQL PROCEDURE successfully completed.

SELECT sql_handle, sql_text, plan_name, enabled
FROM dba_sql_plan_baselines
WHERE sql_text LIKE 'SELECT p.prod_name, %';
SQL_HANDLE SQL_TEXT PLAN_NAME ENA
------------------ -- --------------------- ---
SQL_8f876d84821398cf SELECT p.prod_name, sum(s.amount_sold) SQL_PLAN_8z1vdhk1176 NO

FROM products p , sales s g42949306

Step 4. Disable plan in SQL plan baseline for the non-hinted SQL statement
Influence execution plan without adding hints

SELECT /*+ index(p) */ p.prod_name,SUM(s.amount_sold)
FROM products p, sales s
WHERE p.prod_id = s.prod_id
AND p.supplier_id = :sup_id
GROUP BY p.prod_name;

PROD_NAME SUM(S.AMOUNT_SOLD)
--------------------------------------- ------------------
Baseball trouser Kids 91
Short Sleeve Rayon Printed Shirt $8.99 32

Step 5. Manually modify the SQL statement to use the hint(s) & execute it
Influence execution plan without adding hints

SELECT sql_id, plan_hash_value, sql_fulltext
FROM v$sql
WHERE sql_text LIKE 'SELECT /*+ index(p) */ p.prod_name, %';

SQL_ID PLAN_HASH_VLAUE SQL_FULLTEXT
------------- --------------- -----------------------------------
avph0nnq5pfc2 2567686925 SELECT /*+ index(p) */ p.prod_name,

SUM(s.amount_sold) FROM products p,
sales

Step 6. Find SQL_ID & PLAN_HASH_VALUE for hinted SQL stmt in V$SQL
Influence execution plan without adding hints

VARIABLE cnt NUMBER
EXECUTE :cnt := dbms_spm.load_plans_from_cursor_cache(sql_id=>'avph0nnq5pfc2’,-

plan_hash_value=>'2567686925', -
sql_handle=>'SQL_8f876d84821398cf‘);

PL/SQL PROCEDURE successfully completed.

Step 7. Associate hinted plan with original SQL stmt’s SQL HANDLE
Influence execution plan without adding hints

SQL_ID & PLAN_HASH_VALUE belong to hinted
statement
SQL_HANDLE is for the non-hinted statement

SELECT sql_handle, sql_text, plan_name, enabled
FROM dba_sql_plan_baselines
WHERE sql_text LIKE 'SELECT p.prod_name, %';
SQL_HANDLE SQL_TEXT PLAN_NAME ENA
------------------ --------------------------------------- -------------------- ---
SQL_8f876d84821398cf SELECT p.prod_name, sum(s.amount_sold) SQL_PLAN_8z1vdhk1176 NO

FROM products p , sales s g42949306

SQL_8f876d84821398cf SELECT p.prod_name, sum(s.amount_sold) SQL_PLAN_8z1vdhk1176 YES
FROM products p , sales s 6ge1c67f67

Step 8. Confirm SQL statement has two plans in its SQL plan baseline
Influence execution plan without adding hints

Hinted plan is the only enabled
plan for non-hinted SQL statement

Step 9. Confirm hinted plan is being used
Influence execution plan without adding hints

Non-hinted SQL text but it
is using the plan hash
value for the hinted
statement

Note section also confirms
SQL plan baseline used for
statement

79

5

4

3

2

1 What are hints?

How to use Optimizer hints

Useful Optimizer hints to know

Why are Optimizer hints ignored?

If you can hint it, baseline it

Managing an existing hinted application

Program Agenda

6

6

SQL Performance Analyzer
Managing an existing hinted application

Compare SQL
performance

Establish baseline Set underscore
parameter

_OPTIMIZER_IGNORE_HINTS

1 2

3
Execute
workload

Execute
workload

Managing an existing hinted application

Optimizer hints should only be used with extreme caution
• Exhaust all other tuning mechanisms first

- Statistics, SQL Tuning Advisor, etc.

To guarantee the same plan every time supply a complete outline
• Easier to do this with SQL Plan Management

Hints live forever!
• Use _OPTIMIZER_IGNORE_HINTS parameter to test query performance

without hints

Summary

Join the Conversation

83

Related White Papers
• What to expect from the Optimizer in 12c
• What to expect from the Optimizer in 11g

https://twitter.com/SQLMaria
https://blogs.oracle.com/optimizer/
https://sqlmaria.com
https://www.facebook.com/SQLMaria

http://www.oracle.com/technetwork/database/bi-datawarehousing/twp-optimizer-with-oracledb-12c-1963236.pdf
http://www.oracle.com/technetwork/database/focus-areas/bi-datawarehousing/twp-upgrading-10g-to-11g-what-to-ex-133707.pdf

