
Oracle 12c Identity columns (Corrado Piola)

 Page 1

Identity columns
- A new entry in Oracle® Database 12c -

Author: Corrado Piola, OCP

Last updated: September 2013

Introduction

Good news for software and database developers: Oracle® Database 12c introduced Identity, an
auto-incremental (system-generated) column to be used - commonly - for surrogate Primary Keys.
But not for Primary Keys only...

In the previous database versions (until 11g), you can implement an Identity by creating two
additional objects: a Sequence and a Trigger. You can avoid the Trigger, if you want, but you have
to manually invoke the NEXTVAL method of your Sequence object.
Now (from 12c onward) you can create your own Table and - as a part of its structure - define the
column that has to be generated as an Identity. No more and no less. And there is an intermediate
solution: in 12c you can manually create your own Sequence, and then use it as a default value for
your Table's column.
It’s interesting to note that Oracle introduced Identity column in this last release, almost at the
same time in which Microsoft® SQL Server® 2012 introduced Sequence objects.

This document doesn't want to be complete or exhaustive, but it shows you how to implement this
new feature. My name is neither Cary Millsap nor Jonathan Lewis so, please, forgive (and forget, as
soon as possible!) any possible mistake that I could have made over the pages which follow.
Please, feel free to contact me at my e-mail address (at the end of the document).

Should you need more details about the Identity column, you can find almost everything in Oracle®
database documentation and in other sources over the internet (Tim Hall, for example, has written
really good articles on this topic).
I have written nothing new, obviously, but I hope you will find this document an interesting reading.

I will locally connect to an Oracle® 12c R1 database server, and I will use two different users: most
of the time I will use my user CONRAD (with all the privileges to create the needed objects, and with
unlimited quotas on my default Tablespace CONRAD_TAB, a Locally Managed Tablespace with
Automatic Segment Space Management) and, whenever a privileged user is required, I will use the
user SYS. I have not constrained my Tables with Primary Keys, because it's not necessary for my
test purposes.
If you need to create your test user from scratch, please refer to Appendix A at the end of this
document. Appendix B shows you how to clean your test environment.

Please, be careful: don't make your tests in a production environment, especially when connected
with SYSDBA privileges, as you could seriously damage your own data.
In the following examples, when needed, I have formatted the output for better readability.

Now I will show you two pre-12c solutions and two 12c ones.

Oracle 12c Identity columns (Corrado Piola)

 Page 2

Pre-12c solutions

For our test cases we need the following objects: a Table, a Sequence and a before-insert row-level
Trigger:

- Table T1 with a numeric column (we want to simulate the auto-incremental behavior)
- Sequence SEQ_T1_ID1 (to use for the number generation)
- Trigger TRG_T1_ID1 (that populates our column automatically)

Obviously you need the CREATE TABLE, CREATE SEQUENCE and - optionally - CREATE TRIGGER
privileges, and some quotas (maybe unlimited) on the default Tablespace (I will use the default
one).

First solution (Sequence + Trigger + Table)

First of all, I want show you the solution that includes the creation of a Trigger. This allows you to
avoid the explicit call to your Sequence in every INSERT statement.

Let's start:

CONRAD@orcl> CREATE TABLE T1
 2 (ID1 NUMBER,
 3 TNAME VARCHAR2(128));

Table created.

CONRAD@orcl> CREATE SEQUENCE SEQ_T1_ID1;

Sequence created.

CONRAD@orcl> CREATE OR REPLACE TRIGGER TRG_T1_ID1
 2 BEFORE INSERT ON T1
 3 FOR EACH ROW
 4 BEGIN
 5 SELECT SEQ_T1_ID1.NEXTVAL INTO :NEW.ID1 FROM DUAL;
 6 END;
 7 /

Trigger created.

CONRAD@orcl>

And now you can insert your first record, without any reference to the Sequence:

CONRAD@orcl> INSERT INTO T1 (TNAME) VALUES ('VALUE 1');

1 row created.

CONRAD@orcl> SELECT * FROM T1 ORDER BY ID1;

 ID1 TNAME
---------- --
 1 VALUE 1

CONRAD@orcl>

If you specify a value for the ID1 column, such a value is just ignored (thanks to the Trigger
definition):

CONRAD@orcl> INSERT INTO T1 (ID1, TNAME) VALUES (19, 'VALUE 2');

1 row created.

Oracle 12c Identity columns (Corrado Piola)

 Page 3

CONRAD@orcl> SELECT * FROM T1 ORDER BY ID1;

 ID1 TNAME
---------- --
 1 VALUE 1
 2 VALUE 2

CONRAD@orcl>

Moreover, I can't insert a NULL, because the Trigger always generates the next value from the
Sequence (whether I supply a value or not):

CONRAD@orcl> INSERT INTO T1 (ID1, TNAME) VALUES (NULL, 'VALUE 3');

1 row created.

CONRAD@orcl> SELECT * FROM T1 ORDER BY ID1;

 ID1 TNAME
---------- --
 1 VALUE 1
 2 VALUE 2
 3 VALUE 3

CONRAD@orcl> COMMIT;

Commit complete.

CONRAD@orcl>

As you can see, the Trigger has automatically populated the column ID1 for us, for each case. That's
all.

But I can define my Trigger so that it accepts a supplied value too, if present:

CONRAD@orcl> CREATE OR REPLACE TRIGGER TRG_T1_ID1
 2 BEFORE INSERT ON T1
 3 FOR EACH ROW
 4 WHEN (NEW.ID1 IS NULL)
 5 BEGIN
 6 SELECT SEQ_T1_ID1.NEXTVAL INTO :NEW.ID1 FROM DUAL;
 7 END;
 8 /

Trigger created.

CONRAD@orcl> INSERT INTO T1 (ID1, TNAME) VALUES (19, 'VALUE 4');

1 row created.

CONRAD@orcl> SELECT * FROM T1 ORDER BY ID1;

 ID1 TNAME
---------- --
 1 VALUE 1
 2 VALUE 2
 3 VALUE 3
 19 VALUE 4

CONRAD@orcl>

Still I can't insert a NULL, because the Trigger generates a value from the Sequence every time I
supply a NULL:

CONRAD@orcl> INSERT INTO T1 (ID1, TNAME) VALUES (NULL, 'VALUE 5');

1 row created.

Oracle 12c Identity columns (Corrado Piola)

 Page 4

CONRAD@orcl> SELECT * FROM T1 ORDER BY ID1;

 ID1 TNAME
---------- --
 1 VALUE 1
 2 VALUE 2
 3 VALUE 3
 4 VALUE 5
 19 VALUE 4

CONRAD@orcl> COMMIT;

Commit complete.

CONRAD@orcl>

Second solution (Sequence + Table)

The second solution, as I mentioned earlier, has no Trigger that generates the next value for you, so
you need to make an explicit call to Sequence's NEXTVAL method.

CONRAD@orcl> CREATE TABLE T2
 2 (ID2 NUMBER,
 3 TNAME VARCHAR2(128));

Table created.

CONRAD@orcl> CREATE SEQUENCE SEQ_T2_ID2;

Sequence created.

CONRAD@orcl>

Now you have to manually specify the Sequence as part of the INSERT statement:

CONRAD@orcl> INSERT INTO T2 (ID2, TNAME) VALUES (SEQ_T2_ID2.NEXTVAL, 'VALUE 1');

1 row created.

CONRAD@orcl> SELECT * FROM T2 ORDER BY ID2;

 ID2 TNAME
---------- --
 1 VALUE 1

CONRAD@orcl> COMMIT;

Commit complete.

CONRAD@orcl>

You can supply a NULL only if you have not defined a NOT NULL constraint on the ID2 column. Keep
in mind that the Table and the Sequence are completely independent from each other.

Oracle 12c Identity columns (Corrado Piola)

 Page 5

New 12c solutions

I will show you the two solutions that I mentioned in the Introduction: in the first one you need to
create a Sequence and your Table, in the second one you need your Table only.

First solution (Sequence + Table)

As a first approach I wish to show you the one I have previously called (see Introduction) as an
intermediate solution. You create a Sequence, independent from the Table, and then you set it as
the default value in the Table definition.

Let's start…

CONRAD@orcl> CREATE SEQUENCE SEQ_T3_ID3;

Sequence created.

CONRAD@orcl> CREATE TABLE T3
 2 (ID3 NUMBER DEFAULT SEQ_T3_ID3.NEXTVAL,
 3 TNAME VARCHAR2(128));

Table created.

CONRAD@orcl>

The Sequence is now part of the Table definition:

CONRAD@orcl> SELECT DBMS_METADATA.GET_DDL('TABLE', 'T3') FROM DUAL;

DBMS_METADATA.GET_DDL('TABLE','T3')

 CREATE TABLE "CONRAD"."T3"
 ("ID3" NUMBER DEFAULT "CONRAD"."SEQ_T3_ID3"."NEXTVAL",
 "TNAME" VARCHAR2(128)
) SEGMENT CREATION DEFERRED
 PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255
 NOCOMPRESS LOGGING
 TABLESPACE "CONRAD_TAB"

CONRAD@orcl>

And in the [USER|ALL|DBA]_TAB_COLUMNS views we can see the DATA_DEFAULT column set:

CONRAD@orcl> SELECT COLUMN_ID, COLUMN_NAME, DATA_DEFAULT
 2 FROM USER_TAB_COLUMNS
 3 WHERE TABLE_NAME = 'T3'
 4 ORDER BY COLUMN_ID;

 COLUMN_ID COLUMN_NAME DATA_DEFAULT
---------- ----------- -------------------------------
 1 ID3 "CONRAD"."SEQ_T3_ID3"."NEXTVAL"
 2 TNAME

CONRAD@orcl>

And we have no constraint:

CONRAD@orcl> SELECT *
 2 FROM USER_CONSTRAINTS
 3 WHERE TABLE_NAME = 'T3';

no rows selected

CONRAD@orcl>

Oracle 12c Identity columns (Corrado Piola)

 Page 6

We can finally insert our first value, without specifying the ID3 column:

CONRAD@orcl> INSERT INTO T3 (TNAME) VALUES ('VALUE 1');

1 row created.

CONRAD@orcl> SELECT * FROM T3;

 ID3 TNAME
---------- --
 1 VALUE 1

CONRAD@orcl>

If we explicitly specify our ID3 value, Oracle® doesn't use the DEFAULT property defined for the ID3
column in the Table definition.

CONRAD@orcl> INSERT INTO T3 (ID3, TNAME) VALUES (19, 'VALUE 2');

1 row created.

CONRAD@orcl> SELECT * FROM T3 ORDER BY ID3;

 ID3 TNAME
---------- --
 1 VALUE 1
 19 VALUE 2

CONRAD@orcl>

We can even insert a NULL, in the ID3 column (if I have not defined a NOT NULL constraint,
obviously):

CONRAD@orcl> INSERT INTO T3 (ID3, TNAME) VALUES (NULL, 'VALUE 3');

1 row created.

CONRAD@orcl> SELECT * FROM T3 ORDER BY ID3;

 ID3 TNAME
---------- --
 1 VALUE 1
 19 VALUE 2
 VALUE 3

CONRAD@orcl> COMMIT;

Commit complete.

CONRAD@orcl>

As we expected, the Sequence didn't miss any value:

CONRAD@orcl> SELECT SEQ_T3_ID3.NEXTVAL FROM DUAL;

 NEXTVAL

 2

CONRAD@orcl>

But there's another available option: I can tell Oracle® to use its DEFAULT value (the Sequence
NEXTVAL) even when I explicitly supply a NULL for the ID3 column: I use the DEFAULT ON NULL
property.

Oracle 12c Identity columns (Corrado Piola)

 Page 7

Please note that I have to delete any record which has ID3 set to NULL, in order to alter the table
structure as desired:

CONRAD@orcl> ALTER TABLE T3
 2 MODIFY (ID3 NUMBER DEFAULT ON NULL SEQ_T3_ID3.NEXTVAL);
ALTER TABLE T3
*
ERROR at line 1:
ORA-02296: cannot enable (CONRAD.) - null values found

CONRAD@orcl> DELETE FROM T3 WHERE ID3 IS NULL;

1 row deleted.

CONRAD@orcl> ALTER TABLE T3
 2 MODIFY (ID3 NUMBER DEFAULT ON NULL SEQ_T3_ID3.NEXTVAL);

Table altered.

CONRAD@orcl>

Now, when I insert a NULL I get the next available Sequence value:

CONRAD@orcl> INSERT INTO T3 (ID3, TNAME) VALUES (NULL, 'VALUE 3');

1 row created.

CONRAD@orcl> SELECT * FROM T3 ORDER BY ID3;

 ID3 TNAME
---------- --
 1 VALUE 1
 3 VALUE 3
 19 VALUE 2

CONRAD@orcl> COMMIT;

Commit complete.

CONRAD@orcl> SELECT COLUMN_ID, COLUMN_NAME, DATA_DEFAULT, DEFAULT_ON_NULL
 2 FROM USER_TAB_COLUMNS
 3 WHERE TABLE_NAME = 'T3'
 4 ORDER BY COLUMN_ID;

 COLUMN_ID COLUMN_NAME DATA_DEFAULT DEF
---------- ----------- ------------------------------- ---
 1 ID3 "CONRAD"."SEQ_T3_ID3"."NEXTVAL" YES
 2 TNAME NO

CONRAD@orcl>

And thanks to DBMS_METADATA.GET_DDL function we can see the new definition of the ID3 column:

"ID3" NUMBER DEFAULT "CONRAD"."SEQ_T3_ID3"."NEXTVAL" NOT NULL ENABLE

As a matter of fact, now we can see a new constraint:

CONRAD@orcl> SELECT CONSTRAINT_NAME, CONSTRAINT_TYPE, SEARCH_CONDITION
 2 FROM USER_CONSTRAINTS
 3 WHERE TABLE_NAME = 'T3';

CONSTRAINT_NAME CONSTRAINT_TYPE SEARCH_CONDITION
--------------- --------------- -----------------
SYS_C0011098 C "ID3" IS NOT NULL

CONRAD@orcl>

Oracle 12c Identity columns (Corrado Piola)

 Page 8

Another interesting thing to note is that I can drop the Sequence, even if it's used as a DEFAULT
value in a Table definition:

CONRAD@orcl> DROP SEQUENCE SEQ_T3_ID3;

Sequence dropped.

CONRAD@orcl>

Obviously this DDL command has committed our Transaction, so we don't need to issue a COMMIT.
Despite the fact that I have dropped the Sequence, I can still see it in the Table definition:

CONRAD@orcl> SELECT DBMS_METADATA.GET_DDL('TABLE', 'T3') FROM DUAL;

DBMS_METADATA.GET_DDL('TABLE','T3')
--

 CREATE TABLE "CONRAD"."T3"
 ("ID3" NUMBER DEFAULT "CONRAD"."SEQ_T3_ID3"."NEXTVAL",
 "TNAME" VARCHAR2(128)
) SEGMENT CREATION IMMEDIATE
 PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255
 NOCOMPRESS LOGGING
 STORAGE(INITIAL 4194304 NEXT 4194304 MINEXTENTS 1 MAXEXTENTS 2147483645
 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1
 BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT)
 TABLESPACE "CONRAD_TAB"

CONRAD@orcl>

But what happens when we try to insert a record into the Table?
It succeeds in the only case we explicitly specify a value for the ID3 column, otherwise it tries to use
the Sequence and it fails:

CONRAD@orcl> INSERT INTO T3 (ID3, TNAME) VALUES (37, 'VALUE 4');

1 row created.

CONRAD@orcl> INSERT INTO T3 (TNAME) VALUES ('VALUE 5');
INSERT INTO T3 (TNAME) VALUES ('VALUE 5')
 *
ERROR at line 1:
ORA-02289: sequence does not exist

CONRAD@orcl>

So, finally, commit our transaction and let's see the final Table's content:

CONRAD@orcl> COMMIT;

Commit complete.

CONRAD@orcl> SELECT * FROM T3;

 ID3 TNAME
---------- --
 1 VALUE 1
 3 VALUE 3
 19 VALUE 2
 37 VALUE 4

CONRAD@orcl>

Oracle 12c Identity columns (Corrado Piola)

 Page 9

Second solution (Table)

This approach is really simple, because you don't need to create either a Trigger or a Sequence, and
your Table is all that you need: a Table with a numeric column that has the Identity, auto-
incremental, property. Oracle®, behind the scenes, creates the Sequence for you.
Please note: the owner of the Table (CONRAD, in my case) must have both the CREATE TABLE
privilege, as well as the CREATE SEQUENCE. And when you create your Table you don't immediately
need quotas on the Tablespace you create the Table in, not until you insert your first record (thanks
to Deferred Segment Creation, from 11gR2 onward).
The Identity column must be numeric. You almost always define it as NUMBER (with neither precision
nor scale), but you can specify a precision too, if you want. In this latter case pay attention that if
you reach the limit that you specify, Oracle® throws an error (as you will see in one of the following
examples) because the system-generated Sequence is independent of your column precision.

Let's try this…

CONRAD@orcl> CREATE TABLE T4
 2 (ID4 NUMBER GENERATED AS IDENTITY,
 3 TNAME VARCHAR2(128));

Table created.

CONRAD@orcl> INSERT INTO T4 (TNAME) VALUES ('VALUE 1');

1 row created.

CONRAD@orcl> SELECT * FROM T4;

 ID4 TNAME
---------- --
 1 VALUE 1

CONRAD@orcl> COMMIT;

Commit complete.

CONRAD@orcl>

We obtained the same behavior and the same result, but with much less work.

In the [USER|ALL|DBA]_TABLES views we can easily see whether a Table contains an Identity
column (T4) or not (T1, T2, T3):

CONRAD@orcl> SELECT TABLE_NAME, HAS_IDENTITY
 2 FROM USER_TABLES
 3 WHERE TABLE_NAME IN ('T1', 'T2', 'T3', 'T4')
 4 ORDER BY TABLE_NAME;

TABLE_NAME HAS
---------- ---
T1 NO
T2 NO
T3 NO
T4 YES

CONRAD@orcl>

And in the [USER|ALL|DBA]_TAB_COLUMNS views we can see which column has the Identity property
(ID4):

CONRAD@orcl> SELECT TABLE_NAME, COLUMN_NAME, IDENTITY_COLUMN
 2 FROM USER_TAB_COLUMNS
 3 WHERE TABLE_NAME IN ('T1', 'T2', 'T3', 'T4')
 4 ORDER BY TABLE_NAME, COLUMN_ID;

Oracle 12c Identity columns (Corrado Piola)

 Page 10

TABLE_NAME COLUMN_NAME IDE
---------- ----------- ---
T1 ID1 NO
T1 TNAME NO
T2 ID2 NO
T2 TNAME NO
T3 ID3 NO
T3 TNAME NO
T4 ID4 YES
T4 TNAME NO

8 rows selected.

CONRAD@orcl>

Another way to look at the Identity columns is by the [USER|ALL|DBA]_TAB_IDENTITY_COLS views:

CONRAD@orcl> SELECT TABLE_NAME, COLUMN_NAME, GENERATION_TYPE, IDENTITY_OPTIONS
 2 FROM USER_TAB_IDENTITY_COLS
 3 ORDER BY TABLE_NAME;

TABLE_NAME COLUMN_NAME GENERATION IDENTITY_OPTIONS
---------- ----------- ---------- ------------------
T4 ID4 ALWAYS START WITH: 1, INCREMENT BY: 1,
 MAX_VALUE: 9999999999999999999999999999,
 MIN_VALUE: 1, CYCLE_FLAG: N,
 CACHE_SIZE: 20, ORDER_FLAG: N

CONRAD@orcl>

The GENERATION_TYPE column shows you that Oracle® will ALWAYS populate the ID4 column with a
Sequence value for you. That's the default behavior, as you can see, because I have not specified
the ALWAYS keyword earlier in my CREATE TABLE command. I could have created my Table as:

CREATE TABLE T4
(ID4 NUMBER GENERATED ALWAYS AS IDENTITY,
 TNAME VARCHAR2(128));

That's the same.
With the ALWAYS option, if I explicitly specify a value for the ID4 column in my INSERT statement, I
get an error:

CONRAD@orcl> INSERT INTO T4 (ID4, TNAME) VALUES (19, 'VALUE 2');
INSERT INTO T4 (ID4, TNAME) VALUES (19, 'VALUE 2')
 *
ERROR at line 1:
ORA-32795: cannot insert into a generated always identity column

CONRAD@orcl>

Oracle® has automatically created a NOT NULL Check Constraint (I have not explicitly specified "NOT
NULL" in my CREATE TABLE statement), and this constraint is "Not Deferrable" and "Immediate",
too:

CONRAD@orcl> SELECT CONSTRAINT_NAME, CONSTRAINT_TYPE, TABLE_NAME,
 2 SEARCH_CONDITION, DEFERRABLE, DEFERRED
 3 FROM USER_CONSTRAINTS
 4 WHERE TABLE_NAME IN ('T1', 'T2', 'T3', 'T4')
 5 ORDER BY TABLE_NAME, CONSTRAINT_NAME;

CONSTRAINT_NAME C TABLE_NAME SEARCH_CONDITION DEFERRABLE DEFERRED
--------------- - ---------- ----------------- -------------- ---------
SYS_C0011088 C T4 "ID4" IS NOT NULL NOT DEFERRABLE IMMEDIATE

CONRAD@orcl>

Oracle 12c Identity columns (Corrado Piola)

 Page 11

And it has automatically created a Sequence for us, too. So, let's see all these Sequences
(manually created and system-generated):

CONRAD@orcl> SELECT * FROM USER_SEQUENCES
 2 ORDER BY SEQUENCE_NAME;

SEQUENCE_NAME MIN_VALUE MAX_VALUE INCREMENT_BY CYCLE_FLAG
------------- --------- ---------------------------- ------------ ----------
ISEQ$$_95174 1 9999999999999999999999999999 1 N
SEQ_T1_ID1 1 9999999999999999999999999999 1 N
SEQ_T2_ID2 1 9999999999999999999999999999 1 N

ORDER_FLAG CACHE_SIZE LAST_NUMBER PARTITION_COUNT SESSION_FLAG KEEP_VALUE
---------- ---------- ----------- --------------- ------------ ----------
N 20 21 N N
N 20 21 N N
N 20 21 N N

CONRAD@orcl>

Remember: we have three Sequences only - not four - because we have dropped one of them…

Furthermore, we can see the name of the automatically created Sequence in the DATA_DEFAULT
column of the [USER|ALL|DBA]_TAB_COLUMNS views:

CONRAD@orcl> SELECT TABLE_NAME, COLUMN_NAME, DATA_DEFAULT
 2 FROM USER_TAB_COLUMNS
 3 WHERE IDENTITY_COLUMN = 'YES'
 4 ORDER BY TABLE_NAME, COLUMN_ID;

TABLE_NAME COLUMN_NAME DATA_DEFAULT
---------- ----------- -------------------------------
T4 ID4 "CONRAD"."ISEQ$$_95174".nextval

CONRAD@orcl>

Finally, for the sake of completeness, we obviously see that there's only one Trigger, as we
expected: the one we have manually created in the first pre-12c solution, because the Identity
doesn't need it:

CONRAD@orcl> SELECT TRIGGER_NAME, TRIGGER_TYPE FROM USER_TRIGGERS;

TRIGGER_NAME TRIGGER_TYPE
------------ ---------------
TRG_T1_ID1 BEFORE EACH ROW

CONRAD@orcl>

From the USER_SEQUENCES output shown earlier, we can see that all the Sequence options are
exactly the same for both (manual and automatic). So Oracle® has automatically created the
Sequence with all the default options.

To be more precise, in SYS.SEQ$ we can see a different FLAGS bitmap (the sixth bit is set to "1" for
the system-generated Sequence):
- In the "manually" created Sequence, we have a bitmap that's something like "0000001000"
- In the "automatically" created one, we have a different bitmap: something like "0000101000"
I might be wrong, however I have never seen the sixth bit set to "1" for Sequences other than
system-generated ones.
You can find references to the fourth bit (decode(bitand(flags, 8), 8, 1, 0)) in the following Views:
- LOGSTDBY_SUPPORT (CURRENT_SBY column) in 10gR2
- LOGSTDBY_SUPPORT_SEQ (CURRENT_SBY column) in 11gR2 and 12cR1
In 12c we can see a reference to the seventh bit (SESSION_FLAG) and the tenth bit (KEEP_VALUE)
in the [USER|ALL|DBA]_SEQUENCES views.

Oracle 12c Identity columns (Corrado Piola)

 Page 12

SYS@orcl> SELECT O.NAME, S.FLAGS
 2 FROM SYS.SEQ$ S, OBJ$ O
 3 WHERE S.OBJ# = O.OBJ#
 4 AND O.NAME IN ('ISEQ$$_95174', 'SEQ_T1_ID1', 'SEQ_T2_ID2')
 5 ORDER BY O.NAME;

NAME FLAGS
--------------- -------
ISEQ$$_95174 40
SEQ_T1_ID1 8
SEQ_T2_ID2 8

SYS@orcl>

The Sequence created by Oracle® behind the scenes has a system-generated name that refers to
the Table's Object Id (95174 in my case):

CONRAD@orcl> SELECT OBJECT_NAME FROM USER_OBJECTS WHERE OBJECT_ID = 95174;

OBJECT_NAME

T4

CONRAD@orcl>

The Sequence name contains the Object Id of the Table to which is bounded, so we can't have more
than one Identity column per Table (this is a more than acceptable limit, because it's uncommon to
have a situation in which you need more than one Identity column in the same Table).

We can't drop a system-generated Sequence:

CONRAD@orcl> DROP SEQUENCE ISEQ$$_95174;
DROP SEQUENCE ISEQ$$_95174
 *
ERROR at line 1:
ORA-32794: cannot drop a system-generated Sequence

CONRAD@orcl>

And we can't modify it:

CONRAD@orcl> ALTER SEQUENCE ISEQ$$_95174 INCREMENT BY 2;
ALTER SEQUENCE ISEQ$$_95174 INCREMENT BY 2
*
ERROR at line 1:
ORA-32793: cannot alter a system-generated Sequence

CONRAD@orcl>

Moreover, I can use this system-generated Sequence as if it were a regular Sequence,
independently of the Table (for our purpose it does not make sense, of course).

Let's generate, for example, the next value:

CONRAD@orcl> SELECT ISEQ$$_95174.NEXTVAL FROM DUAL;

 NEXTVAL

 21

CONRAD@orcl>

Now this value (21) has been lost, obviously, as we can see if we insert another record into the
Table.
So, as with every Sequence object, we are never guaranteed about a sequential numbering.

Oracle 12c Identity columns (Corrado Piola)

 Page 13

CONRAD@orcl> INSERT INTO T4 (TNAME) VALUES ('VALUE 2');

1 row created.

CONRAD@orcl> SELECT * FROM T4;

 ID4 TNAME
---------- --
 1 VALUE 1
 22 VALUE 2

CONRAD@orcl> COMMIT;

Commit complete.

CONRAD@orcl>

By default, Oracle® caches 20 values for a Sequence - we can see it from the CACHE_SIZE column -
so the LAST_NUMBER value is the next value we'll get in case we lose the cached ones (for example
after an Instance restart, or after a Shared Pool flushing):

CONRAD@orcl> SELECT SEQUENCE_NAME, CACHE_SIZE, LAST_NUMBER
 2 FROM USER_SEQUENCES
 3 ORDER BY SEQUENCE_NAME;

SEQUENCE_NAME CACHE_SIZE LAST_NUMBER
------------- ---------- -----------
ISEQ$$_95174 20 41
SEQ_T1_ID1 20 21
SEQ_T2_ID2 20 21

CONRAD@orcl>

SYS@orcl> ALTER SYSTEM FLUSH SHARED_POOL;

System altered.

SYS@orcl>

The NEXTVAL will be 41, instead of 23:

CONRAD@orcl> SELECT ISEQ$$_95174.NEXTVAL FROM DUAL;

 NEXTVAL

 41

CONRAD@orcl> SELECT SEQUENCE_NAME, CACHE_SIZE, LAST_NUMBER
 2 FROM USER_SEQUENCES
 3 ORDER BY SEQUENCE_NAME;

SEQUENCE_NAME CACHE_SIZE LAST_NUMBER
------------- ---------- -----------
ISEQ$$_95174 20 61
SEQ_T1_ID1 20 21
SEQ_T2_ID2 20 21

CONRAD@orcl>

So, the LAST_NUMBER column is something like a High-water Mark of the Sequence (although it's a
"next" value, and not a "last" value). In fact in the SYS.SEQ$ view, on which the
[USER|ALL|DBA]_SEQUENCES views are based, is named HIGHWATER:

Oracle 12c Identity columns (Corrado Piola)

 Page 14

SYS@orcl> SELECT O.OBJ#, O.NAME, S.CACHE, S.HIGHWATER
 2 FROM SYS.SEQ$ S, SYS.OBJ$ O
 3 WHERE S.OBJ# = O.OBJ# AND O.NAME = 'ISEQ$$_95174';

 OBJ# NAME CACHE HIGHWATER
----- ------------ ----- ---------
95175 ISEQ$$_95174 20 61

SYS@orcl>

It's interesting to see how Oracle® created the Table with the Identity column:

CONRAD@orcl> SELECT DBMS_METADATA.GET_DDL('TABLE', 'T4') FROM DUAL;

DBMS_METADATA.GET_DDL('TABLE','T4')
--

 CREATE TABLE "CONRAD"."T4"
 ("ID4" NUMBER GENERATED ALWAYS AS IDENTITY
 MINVALUE 1 MAXVALUE 9999999999999999999999999999
 INCREMENT BY 1 START WITH 1 CACHE 20
 NOORDER NOCYCLE NOT NULL ENABLE,
 "TNAME" VARCHAR2(128)
) SEGMENT CREATION IMMEDIATE
 PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255
 NOCOMPRESS LOGGING
 STORAGE(INITIAL 4194304 NEXT 4194304 MINEXTENTS 1 MAXEXTENTS 2147483645
 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1
 BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT)
 TABLESPACE "CONRAD_TAB"

CONRAD@orcl>

It contains all the parameters of a full Sequence definition.
This is useful, because we can define this Identity in a handful of ways. For example we could define
our Identity so that it starts with a different value, or with a different incremental gap (INCREMENT
BY).

For example, let’s suppose we want to start with the value 500, and we want an increment by 10.
With the default CACHE=20 we have cached in the Shared Pool all the values between 500 and 690.

CONRAD@orcl> CREATE TABLE T
 2 (ID NUMBER GENERATED ALWAYS AS IDENTITY
 3 INCREMENT BY 10 START WITH 500,
 4 TNAME VARCHAR2(128));

Table created.

CONRAD@orcl> INSERT INTO T (TNAME) VALUES ('VALUE 1');

1 row created.

CONRAD@orcl> INSERT INTO T (TNAME) VALUES ('VALUE 2');

1 row created.

CONRAD@orcl> SELECT * FROM T;

 ID TNAME
---------- --
 500 VALUE 1
 510 VALUE 2

CONRAD@orcl> COMMIT;

Commit complete.

CONRAD@orcl>

Oracle 12c Identity columns (Corrado Piola)

 Page 15

Modifying the Identity parameters

We can modify the Table structure and its related Sequence parameters. In this case Oracle®
modifies the Sequence definition but it obviously maintains the same name, because the Sequence
is bound to the Table's Object Id.

Now we'll see that if we change the START WITH parameter, Oracle® recreates (resets) the Sequence
(we can't change the START WITH parameter of a traditional Sequence, as a matter of fact).
But if we change some other parameters, Oracle® doesn't recreate the Sequence and keeps its
current values.
After every change, we will see the output from the DBMS_METADATA.GET_DDL function and the
USER_SEQUENCES view.
We can use the Table T from the previous example. So, first of all, we have to find the system-
generated Sequence name:

CONRAD@orcl> SELECT COLUMN_NAME, DATA_DEFAULT
 2 FROM USER_TAB_COLUMNS
 3 WHERE TABLE_NAME = 'T' AND IDENTITY_COLUMN = 'YES';

COLUMN_NAME DATA_DEFAULT
----------- -------- ----------------------
ID "CONRAD"."ISEQ$$_95196".nextval

CONRAD@orcl>

The last generated value, in the previous example, was 510. So, the next available value in the
cache is 520. In case we lose all the cached values, we will get 700:

CONRAD@orcl> SELECT ISEQ$$_95196.NEXTVAL FROM DUAL;

 NEXTVAL

 520

CONRAD@orcl>

Let's see the current Sequence settings (remember, from the previous example, that we have
specified our custom, non-default, increment and starting values):

MINVALUE 1 MAXVALUE 9999999999999999999999999999 INCREMENT BY 10
START WITH 500 CACHE 20 NOORDER NOCYCLE NOT NULL ENABLE

SEQUENCE_NAME MIN_VALUE MAX_VALUE INCREMENT_BY CYCLE_FLAG
------------- --------- ---------------------------- ------------ ----------
ISEQ$$_95196 1 9999999999999999999999999999 10 N

ORDER_FLAG CACHE_SIZE LAST_NUMBER PARTITION_COUNT SESSION_FLAG KEEP_VALUE
---------- ---------- ----------- --------------- ------------ ----------
N 20 700 N N

Now, for example, let's modify the increment (INCREMENT BY) and caching (CACHE) parameters:

CONRAD@orcl> ALTER TABLE T
 2 MODIFY (ID NUMBER GENERATED ALWAYS AS IDENTITY
 3 INCREMENT BY 50
 4 NOCACHE);

Table altered.

CONRAD@orcl>

Oracle 12c Identity columns (Corrado Piola)

 Page 16

MINVALUE 1 MAXVALUE 9999999999999999999999999999 INCREMENT BY 50
START WITH 500 NOCACHE NOORDER NOCYCLE NOT NULL ENABLE

SEQUENCE_NAME MIN_VALUE MAX_VALUE INCREMENT_BY CYCLE_FLAG
------------- --------- ---------------------------- ------------ ----------
ISEQ$$_95196 1 9999999999999999999999999999 50 N

ORDER_FLAG CACHE_SIZE LAST_NUMBER PARTITION_COUNT SESSION_FLAG KEEP_VALUE
---------- ---------- ----------- --------------- ------------ ----------
N 0 570 N N

The last generated value was 520. But now we don't have cached values, so the next value to be
generated - with the new increment of 50 - is 570, as we can see:

CONRAD@orcl> SELECT ISEQ$$_95196.NEXTVAL FROM DUAL;

 NEXTVAL

 570

CONRAD@orcl>

So Oracle® has not reset the Sequence, but it has used the new INCREMENT value to calculate the
next to be generated.

MINVALUE 1 MAXVALUE 9999999999999999999999999999 INCREMENT BY 50
START WITH 500 NOCACHE NOORDER NOCYCLE NOT NULL ENABLE

SEQUENCE_NAME MIN_VALUE MAX_VALUE INCREMENT_BY CYCLE_FLAG
------------- --------- ---------------------------- ------------ ----------
ISEQ$$_95196 1 9999999999999999999999999999 50 N

ORDER_FLAG CACHE_SIZE LAST_NUMBER PARTITION_COUNT SESSION_FLAG KEEP_VALUE
---------- ---------- ----------- --------------- ------------ ----------
N 0 620 N N

Now, let's modify the starting value (START WITH) only:

CONRAD@orcl> ALTER TABLE T
 2 MODIFY (ID NUMBER GENERATED ALWAYS AS IDENTITY
 3 START WITH 100);

Table altered.

CONRAD@orcl>

MINVALUE 1 MAXVALUE 9999999999999999999999999999 INCREMENT BY 1
START WITH 100 CACHE 20 NOORDER NOCYCLE NOT NULL ENABLE

SEQUENCE_NAME MIN_VALUE MAX_VALUE INCREMENT_BY CYCLE_FLAG
------------- --------- ---------------------------- ------------ ----------
ISEQ$$_95196 1 9999999999999999999999999999 1 N

ORDER_FLAG CACHE_SIZE LAST_NUMBER PARTITION_COUNT SESSION_FLAG KEEP_VALUE
---------- ---------- ----------- --------------- ------------ ----------
N 20 100 N N

As you can see, Oracle® has reset the current parameters (INCREMENT BY and CACHE) to the default
ones. And then, with a new starting value of 100, the next value to be generated has to be 100.

CONRAD@orcl> SELECT ISEQ$$_95196.NEXTVAL FROM DUAL;

 NEXTVAL

 100

CONRAD@orcl>

Oracle 12c Identity columns (Corrado Piola)

 Page 17

After the first number generation (100), thanks to the caching of the next 20 values, the next to be
generated (in the case of loss of all the cached ones) is 120.

MINVALUE 1 MAXVALUE 9999999999999999999999999999 INCREMENT BY 1
START WITH 100 CACHE 20 NOORDER NOCYCLE NOT NULL ENABLE

SEQUENCE_NAME MIN_VALUE MAX_VALUE INCREMENT_BY CYCLE_FLAG
------------- --------- ---------------------------- ------------ ----------
ISEQ$$_95196 1 9999999999999999999999999999 1 N

ORDER_FLAG CACHE_SIZE LAST_NUMBER PARTITION_COUNT SESSION_FLAG KEEP_VALUE
---------- ---------- ----------- --------------- ------------ ----------
N 20 120 N N

You have seen that by changing the START WITH parameter, Oracle® recreates the Sequence from
scratch. In fact, you can't modify the starting value in a manually created Sequence, at least not
with the ALTER SEQUENCE START WITH command:

CONRAD@orcl> CREATE SEQUENCE SEQ_T;

Sequence created.

CONRAD@orcl> ALTER SEQUENCE SEQ_T START WITH 4;
ALTER SEQUENCE SEQ_T START WITH 4
 *
ERROR at line 1:
ORA-02283: cannot alter starting sequence number

CONRAD@orcl> DROP SEQUENCE SEQ_T;

Sequence dropped.

CONRAD@orcl>

Note: you can change the next value to be generated with a little work-around, without recreating
the Sequence, playing with the INCREMENT BY setting (the START WITH setting remains unchanged,
anyway). Keep in mind that there's no CREATE OR REPLACE SEQUENCE command, so should you
need to recreate the Sequence you have to drop it, recreate it and re-grant the needed privileges to
the users.

"By Default" clause

By default (the ALWAYS clause), as previously explained, we can't insert a value into a column
created as Identity:

CONRAD@orcl> INSERT INTO T (ID, TNAME) VALUES (19, 'VALUE 3');
INSERT INTO T (ID, TNAME) VALUES (19, 'VALUE 3')
 *
ERROR at line 1:
ORA-32795: cannot insert into a generated always identity column

CONRAD@orcl>

If we need to insert such "free" values, independently of the Identity mechanism, we have to specify
the BY DEFAULT clause, instead of ALWAYS.

CONRAD@orcl> ALTER TABLE T
 2 MODIFY (ID NUMBER GENERATED BY DEFAULT AS IDENTITY);

Table altered.

CONRAD@orcl>

Oracle 12c Identity columns (Corrado Piola)

 Page 18

This command has not altered any Sequence parameter. They are the same as before the DDL
command.

MINVALUE 1 MAXVALUE 9999999999999999999999999999 INCREMENT BY 1
START WITH 100 CACHE 20 NOORDER NOCYCLE NOT NULL ENABLE

SEQUENCE_NAME MIN_VALUE MAX_VALUE INCREMENT_BY CYCLE_FLAG
------------- --------- ---------------------------- ------------ ----------
ISEQ$$_95196 1 9999999999999999999999999999 1 N

ORDER_FLAG CACHE_SIZE LAST_NUMBER PARTITION_COUNT SESSION_FLAG KEEP_VALUE
---------- ---------- ----------- --------------- ------------ ----------
N 20 120 N N

And you can recognize Identity columns with BY DEFAULT property set:

CONRAD@orcl> SELECT TABLE_NAME, COLUMN_NAME, GENERATION_TYPE
 2 FROM USER_TAB_IDENTITY_COLS
 3 ORDER BY TABLE_NAME;

TABLE_NAME COLUMN_NAME GENERATION
---------- ----------- ----------
T ID BY DEFAULT
T4 ID4 ALWAYS

CONRAD@orcl>

So, now, I can specify my Identity column or not:

CONRAD@orcl> INSERT INTO T (TNAME) VALUES ('VALUE 3');

1 row created.

CONRAD@orcl> INSERT INTO T (ID, TNAME) VALUES (19, 'VALUE 4');

1 row created.

CONRAD@orcl> SELECT * FROM T ORDER BY ID;

 ID TNAME
---------- -----------------
 19 VALUE 4
 120 VALUE 3
 500 VALUE 1
 510 VALUE 2

CONRAD@orcl> COMMIT;

Commit complete.

CONRAD@orcl>

But I can't supply a NULL for the Identity column:

CONRAD@orcl> INSERT INTO T (ID, TNAME) VALUES (NULL, 'VALUE 5');
INSERT INTO T (ID, TNAME) VALUES (NULL, 'VALUE 5')
 *
ERROR at line 1:
ORA-01400: cannot insert NULL into ("CONRAD"."T"."ID")

CONRAD@orcl>

The real problem with the possibility of inserting both system generated values and user-supplied
ones, is that in this way we may have conflicts, because we may insert the same value more than
once: with the auto-increment Sequence and manually. Obviously, this doesn't happen if you define
the Identity column as a Primary Key, or you put a Unique constraint on it (in both cases you will
have a unique constraint violation).
But you may take advantage of this capability, for example, to get back a lost value.

Oracle 12c Identity columns (Corrado Piola)

 Page 19

"By Default on NULL" clause

If we want to have the possibility of specifying a NULL for the Identity column (in the previous
example we got an error), we need the BY DEFAULT ON NULL clause.
But - pay attention - this doesn't mean that you can insert a NULL. Absolutely not! Remember that
Identity columns are - by definition - NOT NULL constrained.
So, if you specify a NULL, instead of getting the ORA-01400 error, your insert will succeed; but
Oracle® will generate the Sequence NEXTVAL for you, and the NULL will be ignored.
So, for example, these two commands are equivalent:

INSERT INTO T (ID, TNAME) VALUES (NULL, 'VALUE X');

INSERT INTO T (TNAME) VALUES ('VALUE X');

Let's try this:

CONRAD@orcl> ALTER TABLE T
 2 MODIFY (ID NUMBER GENERATED BY DEFAULT ON NULL AS IDENTITY);

Table altered.

CONRAD@orcl>

We can recognize Identity columns with BY DEFAULT ON NULL property:

CONRAD@orcl> SELECT COLUMN_ID, COLUMN_NAME, DATA_DEFAULT,
 2 IDENTITY_COLUMN, DEFAULT_ON_NULL
 3 FROM USER_TAB_COLUMNS
 4 WHERE TABLE_NAME = 'T'
 5 ORDER BY COLUMN_ID;

 COLUMN_ID COLUMN_NAME DATA_DEFAULT IDE DEF
---------- ----------- ------------ --- ---
 1 ID "CONRAD"."ISEQ$$_95196".nextval YES YES
 2 TNAME NO NO

CONRAD@orcl>

If we try to insert a NULL, as I previously stated, we get:

CONRAD@orcl> INSERT INTO T (ID, TNAME) VALUES (NULL, 'VALUE 5');

1 row created.

CONRAD@orcl> SELECT * FROM T ORDER BY ID;

 ID TNAME
---------- --------------------------
 19 VALUE 4
 120 VALUE 3
 121 VALUE 5
 500 VALUE 1
 510 VALUE 2

CONRAD@orcl> COMMIT;

Commit complete.

CONRAD@orcl>

Oracle 12c Identity columns (Corrado Piola)

 Page 20

Dropping a Table with an Identity column

When we drop a Table with an Identity column, the system-generated Sequence will be dropped too,
but in the only case you specify the PURGE option. Otherwise it will remain until you purge the
Recycle Bin.
Let's try with our Table T and its Sequence ISEQ$$_95196:

CONRAD@orcl> SELECT SEQUENCE_NAME
 2 FROM USER_SEQUENCES
 3 WHERE SEQUENCE_NAME = 'ISEQ$$_95196';

SEQUENCE_NAME

ISEQ$$_95196

CONRAD@orcl> DROP TABLE T;

Table dropped.

CONRAD@orcl> SELECT SEQUENCE_NAME
 2 FROM USER_SEQUENCES
 3 WHERE SEQUENCE_NAME = 'ISEQ$$_95196';

SEQUENCE_NAME

ISEQ$$_95196

CONRAD@orcl> PURGE RECYCLEBIN;

Recyclebin purged.

CONRAD@orcl> SELECT SEQUENCE_NAME
 2 FROM USER_SEQUENCES
 3 WHERE SEQUENCE_NAME = 'ISEQ$$_95196';

no rows selected

CONRAD@orcl>

Additional restrictions

The Datatype for an Identity column must be Numeric:

CONRAD@orcl> CREATE TABLE T
 2 (ID VARCHAR2(11) GENERATED ALWAYS AS IDENTITY);
(ID VARCHAR2(11) GENERATED ALWAYS AS IDENTITY)
 *
ERROR at line 2:
ORA-30675: identity column must be a numeric type

CONRAD@orcl>

As I previously mentioned, we can't define more than one Identity column per Table:

CONRAD@orcl> CREATE TABLE T
 2 (ID1 NUMBER GENERATED ALWAYS AS IDENTITY,
 3 ID2 NUMBER GENERATED ALWAYS AS IDENTITY);
 ID2 NUMBER GENERATED ALWAYS AS IDENTITY)
 *
ERROR at line 3:
ORA-30669: table can have only one identity column

CONRAD@orcl>

Oracle 12c Identity columns (Corrado Piola)

 Page 21

As any other Sequence, all the values generated are not rollbackable. If you open a Transaction,
generate some values, and then issue a ROLLBACK command, those values are lost:

CONRAD@orcl> CREATE TABLE T
 2 (ID NUMBER GENERATED ALWAYS AS IDENTITY,
 3 TNAME VARCHAR2(128));

Table created.

CONRAD@orcl> INSERT INTO T (TNAME) VALUES ('VALUE 1');

1 row created.

CONRAD@orcl> INSERT INTO T (TNAME) VALUES ('VALUE 2');

1 row created.

CONRAD@orcl> SELECT * FROM T ORDER BY ID;

 ID TNAME
---------- ---------------------------
 1 VALUE 1
 2 VALUE 2

CONRAD@orcl> ROLLBACK;

Rollback complete.

CONRAD@orcl> INSERT INTO T (TNAME) VALUES ('VALUE 1');

1 row created.

CONRAD@orcl> SELECT * FROM T ORDER BY ID;

ID TNAME
---------- ---------------------------
 3 VALUE 1

CONRAD@orcl> COMMIT;

Commit complete.

CONRAD@orcl>

If we create a Table with a CTAS (Create Table … As Select …) command from a Table containing an
Identity column, the new Table will not inherit the Identity column properties, but only the NUMBER
datatype and the NOT NULL constraint:

CONRAD@orcl> CREATE TABLE T_NEW
 2 AS
 3 SELECT ID, TNAME
 4 FROM T;

Table created.

CONRAD@orcl> SELECT DBMS_METADATA.GET_DDL('TABLE', 'T') FROM DUAL;

DBMS_METADATA.GET_DDL('TABLE','T')
--

 CREATE TABLE "CONRAD"."T"
 ("ID" NUMBER GENERATED ALWAYS AS IDENTITY
 MINVALUE 1 MAXVALUE 9999999999999999999999999999
 INCREMENT BY 1 START WITH 1 CACHE 20
 NOORDER NOCYCLE NOT NULL ENABLE,
 "TNAME" VARCHAR2(128)
) SEGMENT CREATION IMMEDIATE
 PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255
 NOCOMPRESS LOGGING
 STORAGE(INITIAL 4194304 NEXT 4194304 MINEXTENTS 1 MAXEXTENTS 2147483645
 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1

Oracle 12c Identity columns (Corrado Piola)

 Page 22

 BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT)
 TABLESPACE "CONRAD_TAB"

CONRAD@orcl> SELECT DBMS_METADATA.GET_DDL('TABLE', 'T_NEW') FROM DUAL;

DBMS_METADATA.GET_DDL('TABLE','T_NEW')
--

 CREATE TABLE "CONRAD"."T_NEW"
 ("ID" NUMBER NOT NULL ENABLE,
 "TNAME" VARCHAR2(128)
) SEGMENT CREATION IMMEDIATE
 PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255
 NOCOMPRESS LOGGING
 STORAGE(INITIAL 4194304 NEXT 4194304 MINEXTENTS 1 MAXEXTENTS 2147483645
 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1
 BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT)
 TABLESPACE "CONRAD_TAB"

CONRAD@orcl> DROP TABLE T PURGE;

Table dropped.

CONRAD@orcl> DROP TABLE T_NEW PURGE;

Table dropped.

CONRAD@orcl>

We can’t modify a Table’s column from NUMBER to Identity (even if the Table is empty):

CONRAD@orcl> CREATE TABLE T
 2 (ID NUMBER,
 3 TNAME VARCHAR2(128));

Table created.

CONRAD@orcl> ALTER TABLE T
 2 MODIFY (ID NUMBER GENERATED AS IDENTITY);
MODIFY (ID NUMBER GENERATED AS IDENTITY)
 *
ERROR at line 2:
ORA-30673: column to be modified is not an identity column

CONRAD@orcl> DROP TABLE T PURGE;

Table dropped.

CONRAD@orcl>

Another thing to note is that a TRUNCATE TABLE command doesn’t reset the Identity column starting
value. If you have a little experience with Microsoft® SQL Server®, for example, you know that after
such a command you’ll get the Identity column reset too.

CONRAD@orcl> CREATE TABLE T
 2 (ID NUMBER(1) GENERATED AS IDENTITY,
 3 TNAME VARCHAR2(128));

Table created.

CONRAD@orcl> INSERT INTO T (TNAME) VALUES ('VALUE 1');

1 row created.

CONRAD@orcl> SELECT * FROM T ORDER BY ID;

 ID TNAME
---------- --------------------
 1 VALUE 1

Oracle 12c Identity columns (Corrado Piola)

 Page 23

CONRAD@orcl> TRUNCATE TABLE T;

Table truncated.

CONRAD@orcl> INSERT INTO T (TNAME) VALUES ('VALUE 1');

1 row created.

CONRAD@orcl> SELECT * FROM T ORDER BY ID;

 ID TNAME
---------- --------------------
 2 VALUE 1

CONRAD@orcl> DROP TABLE T PURGE;

Table dropped.

CONRAD@orcl>

What about errors?

Does any error cause a loss of the next Sequence value? Obviously not… not, of course, if Oracle®
detects it before the statement execution. Let’s see a couple of examples:

CONRAD@orcl> CREATE TABLE T
 2 (ID NUMBER GENERATED ALWAYS AS IDENTITY,
 3 TNAME VARCHAR2(128));

Table created.

CONRAD@orcl> INSERT INTO T (TNAME) VALUES ('VALUE 1');

1 row created.

CONRAD@orcl> INSERT INTO T (ID, TNAME) VALUES (19, 'VALUE 2');
INSERT INTO T (ID, TNAME) VALUES (19, 'VALUE 2')
 *
ERROR at line 1:
ORA-32795: cannot insert into a generated always identity column

CONRAD@orcl> INSERT INTO T (ID, TNAME) VALUES (19, 'VALUE 2');
INSERT INTO T (ID, TNAME) VALUES (19, 'VALUE 2')
 *
ERROR at line 1:
ORA-32795: cannot insert into a generated always identity column

CONRAD@orcl> INSERT INTO T (TNAME) VALUES ('VALUE 2');

1 row created.

CONRAD@orcl> SELECT * FROM T ORDER BY ID;

 ID TNAME
---------- --------------------
 1 VALUE 1
 2 VALUE 2

CONRAD@orcl>

We get two consecutive errors but we preserve the next Sequence value (2). Oracle® throws the
exception before the statement execution (the Sequence value hasn’t been generated yet).

Oracle 12c Identity columns (Corrado Piola)

 Page 24

But what happens if I get an error about the datatype precision?
For example, let’s create an Identity column with precision “1” (the maximum allowed value will be
“9”) and define the Sequence with a starting value of “9” so that the second INSERT statement will
fail.

CONRAD@orcl> DROP TABLE T PURGE;

Table dropped.

CONRAD@orcl> CREATE TABLE T
 2 (ID NUMBER(1) GENERATED AS IDENTITY
 3 START WITH 9,
 4 TNAME VARCHAR2(128));

Table created.

CONRAD@orcl> INSERT INTO T (TNAME) VALUES ('VALUE X');

1 row created.

CONRAD@orcl> INSERT INTO T (TNAME) VALUES ('VALUE X');
INSERT INTO T (TNAME) VALUES ('VALUE X')
*
ERROR at line 1:
ORA-01438: value larger than specified precision allowed for this column

CONRAD@orcl> INSERT INTO T (TNAME) VALUES ('VALUE X');
INSERT INTO T (TNAME) VALUES ('VALUE X')
*
ERROR at line 1:
ORA-01438: value larger than specified precision allowed for this column

CONRAD@orcl> SELECT * FROM T ORDER BY ID;

 ID TNAME
---------- --------------------
 9 VALUE X

CONRAD@orcl> SELECT COLUMN_NAME, DATA_DEFAULT
 2 FROM USER_TAB_COLUMNS
 3 WHERE TABLE_NAME = 'T' AND IDENTITY_COLUMN = 'YES';

COLUMN_NAME DATA_DEFAULT
----------- --
ID "CONRAD"."ISEQ$$_95329".nextval

CONRAD@orcl> SELECT "CONRAD"."ISEQ$$_95329".NEXTVAL FROM DUAL;

 NEXTVAL

 12

CONRAD@orcl>

This time we have lost two values (10 and 11), because the Sequence values have been generated
before getting the error about the precision.

CONRAD@orcl> DROP TABLE T PURGE;

Table dropped.

CONRAD@orcl>

Oracle 12c Identity columns (Corrado Piola)

 Page 25

A basic performance test for INSERT statements

It's interesting to create a little performance test for the discussed solutions. I'll use the
OBJECT_NAME column from the DBA_OBJECTS view to populate the TNAME fields, and I will measure
the total elapsed time. Furthermore, I will use my four Tables T1, T2, T3 and T4, because they are
still alive...
I will execute each of the following blocks of SQL commands for three consecutive times, and I
will report the best elapsed time for each of the four solutions.
Both the two 12c solutions use the Sequence as a default value for the IDx column, so they almost
have the same execution time.

First of all, we need to prepare our environment:

For the first test I will use the following version of the Trigger (I have presented two different
versions, earlier):

CONRAD@orcl> CREATE OR REPLACE TRIGGER TRG_T1_ID1
 2 BEFORE INSERT ON T1
 3 FOR EACH ROW
 4 BEGIN
 5 SELECT SEQ_T1_ID1.NEXTVAL INTO :NEW.ID1 FROM DUAL;
 6 END;
 7 /

Trigger created.

CONRAD@orcl>

For the third test we need to recreate our Sequence SEQ_T3_ID3 that we have dropped in our
earlier tests.

CONRAD@orcl> CREATE SEQUENCE SEQ_T3_ID3;

Sequence created.

CONRAD@orcl>

And now we ask SQL*Plus to show us the query elapsed times:

CONRAD@orcl> set timing on

Let's start!

1. First Pre-12c solution (Sequence + Trigger + Table)

My best execution time:

CONRAD@orcl> TRUNCATE TABLE T1 REUSE STORAGE;

Table truncated.

Elapsed: 00:00:00.51
CONRAD@orcl> INSERT INTO T1 (TNAME)
 2 SELECT OBJECT_NAME
 3 FROM DBA_OBJECTS;

93013 rows created.

Elapsed: 00:00:08.64
CONRAD@orcl>

Oracle 12c Identity columns (Corrado Piola)

 Page 26

2. Second Pre-12c solution (Sequence + Table)

My best execution time:

CONRAD@orcl> TRUNCATE TABLE T2 REUSE STORAGE;

Table truncated.

Elapsed: 00:00:00.31
CONRAD@orcl> INSERT INTO T2 (ID2, TNAME)
 2 SELECT SEQ_T2_ID2.NEXTVAL, OBJECT_NAME
 3 FROM DBA_OBJECTS;

93013 rows created.

Elapsed: 00:00:01.62
CONRAD@orcl>

3. First 12c solution (Sequence + Table)

My best execution time:

CONRAD@orcl> TRUNCATE TABLE T3 REUSE STORAGE;

Table truncated.

Elapsed: 00:00:00.34
CONRAD@orcl> INSERT INTO T3 (TNAME)
 2 SELECT OBJECT_NAME
 3 FROM DBA_OBJECTS;

93013 rows created.

Elapsed: 00:00:01.63
CONRAD@orcl>

4. Second 12c solution (Table)

My best execution time:

CONRAD@orcl> TRUNCATE TABLE T4 REUSE STORAGE;

Table truncated.

Elapsed: 00:00:00.12
CONRAD@orcl> INSERT INTO T4 (TNAME)
 2 SELECT OBJECT_NAME
 3 FROM DBA_OBJECTS;

93013 rows created.

Elapsed: 00:00:01.45
CONRAD@orcl>

We can see that there's a huge difference between the worst method (1. Pre-12c Trigger-based) and
the best one (4. 12c with the Table only): from 8.64 seconds to 1.45 seconds.
The second 12c solution has an Elapsed time which is about the 16.8% of the pre-12c one
(~1/6).
If we consider the pre-12c second solution (explicit use of the Sequence NEXTVAL), yet, we have a
little difference in the elapsed times. So, if you are not using the 12c release, avoid the Trigger-
based approach - if possible - and make use of a Sequence only.

Oracle 12c Identity columns (Corrado Piola)

 Page 27

Appendix A

First of all, I create – connected as SYS - my test Tablespace and my test User:

C:\>sqlplus sys as sysdba

SQL*Plus: Release 12.1.0.1.0 Production on Tue Sep 3 17:40:35 2013

Copyright (c) 1982, 2013, Oracle. All rights reserved.

Enter password:

Connected to:
Oracle Database 12c Enterprise Edition Release 12.1.0.1.0 - 64bit Production
With the Partitioning, OLAP, Advanced Analytics and Real Application Testing opt
ions

SYS@orcl> CREATE TABLESPACE CONRAD_TAB
 2 DATAFILE 'C:\app\oracle\oradata\orcl\CONRAD_1.DBF'
 3 SIZE 20M AUTOEXTEND ON NEXT 10M
 4 EXTENT MANAGEMENT LOCAL
 5 SEGMENT SPACE MANAGEMENT AUTO;

Tablespace created.

SYS@orcl> CREATE USER CONRAD
 2 IDENTIFIED BY conrad
 3 DEFAULT TABLESPACE CONRAD_TAB
 4 QUOTA UNLIMITED ON CONRAD_TAB;

User created.

SYS@orcl>

Then, I need my privileges:

SYS@orcl> GRANT CREATE SESSION TO CONRAD;

Grant succeeded.

SYS@orcl> GRANT CREATE TABLE TO CONRAD;

Grant succeeded.

SYS@orcl> GRANT CREATE SEQUENCE TO CONRAD;

Grant succeeded.

SYS@orcl> GRANT CREATE TRIGGER TO CONRAD;

Grant succeeded.

SYS@orcl> GRANT SELECT ON DBA_OBJECTS TO CONRAD;

Grant succeeded.

SYS@orcl>

And finally I can connect as my test User:

SYS@orcl> conn conrad
Enter password:
Connected.
CONRAD@orcl>

Oracle 12c Identity columns (Corrado Piola)

 Page 28

Appendix B

Clean your test environment.

CONRAD@orcl> set timing off

If you want to drop the whole test environment:

SYS@orcl> DROP USER CONRAD CASCADE;

User dropped.

SYS@orcl> DROP TABLESPACE CONRAD_TAB INCLUDING CONTENTS AND DATAFILES;

Tablespace dropped.

SYS@orcl>

Otherwise, if you want to drop the Objects only, but not the User and the Tablespace:

CONRAD@orcl> DROP TABLE T1 PURGE;

Table dropped.

CONRAD@orcl> DROP TABLE T2 PURGE;

Table dropped.

CONRAD@orcl> DROP TABLE T3 PURGE;

Table dropped.

CONRAD@orcl> DROP TABLE T4 PURGE;

Table dropped.

CONRAD@orcl> DROP SEQUENCE SEQ_T1_ID1;

Sequence dropped.

CONRAD@orcl> DROP SEQUENCE SEQ_T2_ID2;

Sequence dropped.

CONRAD@orcl> DROP SEQUENCE SEQ_T3_ID3;

Sequence dropped.

CONRAD@orcl>

And, finally, you can disconnect your session.

Oracle copyright and trademark
Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their
respective owners. Copyright © 1982, 2013, Oracle and/or its affiliates. All rights reserved.

Corrado Piola
Owner and Database solutions Director at Systrategy Srl
c.piola@systrategy.it www.systrategy.it

Oracle Database 10g, 11g Administrator Certified Professional
Oracle Database 11g Performance Tuning Certified Expert
Oracle Database SQL Certified Expert, Oracle Advanced PL-SQL Developer Certified Professional

mailto:c.piola@systrategy.it
http://www.systrategy.it/

