
Parallel Execution Pitfalls and Fallacies
ITOUG Tech Day, 15 April 2021

Christian Antognini

Christian Antognini
• Senior principal consultant and partner at Trivadis

• Focus: get the most out of database engines

• Logical and physical database design

• Query optimizer

• Application performance management

• Author of Troubleshooting Oracle Performance

@ChrisAntognini antognini.ch

Contents

• PARALLEL and PARALLEL_INDEX

• User-Defined Functions

• Parallel DML Statements

• Index Maintenance

• Validation of Constraints

PARALLEL and PARALLEL_INDEX

PARALLEL and PARALLEL_INDEX

• They only override the DOP defined at the table and index levels

• They don’t force the utilization of parallel execution

• They don’t enable parallel DML statements

User-Defined Functions

User-Defined Functions

• Not all user-defined functions can be evaluated in parallel

• To support parallel execution, a user-defined function must neither write to the
database nor read or modify package variables

• PRAGMA RESTRICT_REFERENCES WNDS, RNPS, WNPS

• User-defined functions that support parallel execution should be decorated with
PARALLEL_ENABLE

• In case PARALLEL_ENABLE is incorrectly used, wrong results are expected!

Parallel DML Statements

Parallel DML Statements

• The following DML statements can be executed in parallel:

• DELETE

• INSERT with a subquery

• MERGE

• UPDATE

• INSERT statements with the VALUES clause can’t be parallelized

Parallel DML Statements – Enabling

• They are disabled by default

• They can be enabled at the session and the SQL statement level

• ALTER SESSION ENABLE PARALLEL DML

• ENABLE_PARALLEL_DML

• When executing parallel DML statements, parallel queries should be enabled

• They are enabled by default

Parallel DML Statements – LOB Columns

• Parallel INSERT

• Non-partitioned tables: only SecureFile LOBs are supported

• Partitioned tables: supported

• With BasicFile LOBs, only partition granules are supported

• Parallel DELETE, MERGE and UPDATE

• Table must be partitioned

• Only partition granules are supported

Parallel DML Statements – Other Restrictions

• DML statements can’t be executed in parallel when:

• A trigger is involved

• Either an ON DELETE CASCADE or deferrable FK is involved

• The modified table has a FK referencing itself

• An object column is modified

• A clustered or temporary table is modified

• A distributed transaction is involved

Parallel DML Statements – ORA-12838

• The session executing a parallel DML statement or a direct-path insert can’t
access the modified table without committing (or rolling back) the transaction

• SQL statements executed against the modified table before committing (or
rolling back) terminate with an ORA-12838

• Because of this limitation, parallel DML statements can’t be used by all batch
jobs (a strategy to cope with partial failures is needed)

Index Maintenance

Index Maintenance

• It can take place either during the operation that modifies the data or in the
INDEX MAINTENANCE row source operation

• It depends on

• The SQL statement being executed

• Whether parallel DML is enabled

• The type of the index

Index Maintenance – Execution Plan

--

| Operation | Name | TQ |IN-OUT|

--

| INSERT STATEMENT | | | |

| PX COORDINATOR | | | |

| PX SEND QC (RANDOM) | :TQ10001 | Q1,01 | P->S |

| INDEX MAINTENANCE | T | Q1,01 | PCWP |

| PX RECEIVE | | Q1,01 | PCWP |

| PX SEND RANGE | :TQ10000 | Q1,00 | P->P |

| LOAD AS SELECT (HYBRID TSM/HWMB)| T | Q1,00 | PCWP |

| OPTIMIZER STATISTICS GATHERING | | Q1,00 | PCWP |

| PX BLOCK ITERATOR | | Q1,00 | PCWC |

| TABLE ACCESS FULL | MASTER | Q1,00 | PCWP |

--

Index Maintenance – Performance Impact

• Index created after the insert (2 min)

INSERT INTO t SELECT …

CREATE UNIQUE INDEX i ON t (id)

CREATE UNIQUE INDEX i ON t (id)

• Index created before the insert (10 min)

INSERT INTO t SELECT …

Validation of Constraints

Primary Key and Unique Constraints

• When they are created, the index supporting them can’t be created in parallel

• To avoid this limitation, create the (unique) index before defining the constraint

• To create an index in parallel without storing the DOP in the data dictionary, use
the PARALLEL hint

CREATE /*+ parallel */ UNIQUE INDEX i ON t (id)

Foreign Keys and Check Constraints

• When they are created or validated, the data already stored in the table is
validated through a recursive query

• The recursive query is executed in parallel when:

• 12c-18c

• The table-level DOP is set to a value greater than 1

• 19c:

• The table-level DOP is set to a value greater than 1 or the DOP is forced
at the session level

• Parallel queries have to be enabled

Summary
• Plenty of requirements must be fulfilled to use parallel execution

• To know whether a SQL statement is executed in parallel, verify its execution
plan

• Parallel DML statements are disabled by default

• The index maintenance is expensive; if possible, avoid it by creating the indexes
after loading the data

• Constraints can be created/validated in parallel

