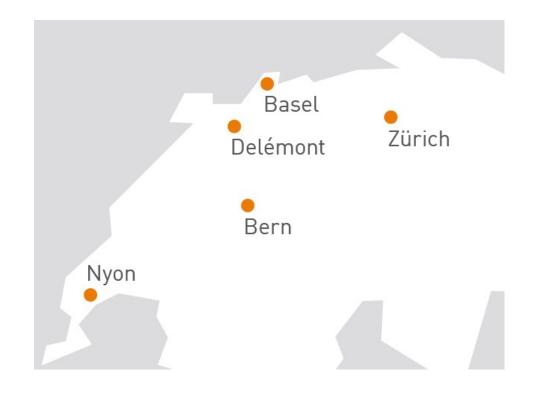


Exadata Cloud at Customer

### Who we are




## The Company

- > Founded in 2010
- > More than 80 specialists
- > Specialized in the Middleware Infrastructure
  - > The invisible part of IT
- > Customers in Switzerland and all over Europe

### Our Offer

- > Consulting
- > Service Level Agreements (SLA)
- > Trainings
- > License Management







## About me



## Clemens Bleile

Principal Consultant & Technology Leader Oracle

+41 78 677 51 09

clemens.bleile[at]dbi-services.com

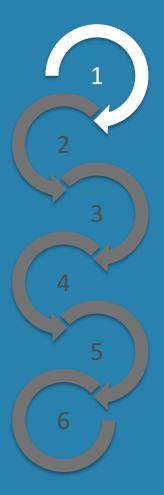


DOAG



## Agenda




- 1.ExaCC What is it and why?
- 2. Customer Objectives
- 3. Things to consider
- 4. Migration Approach / Planning
- 5.Backup & Recovery
- 6.Summary



## ExaCC – What is it and why?

- > Deployment models
- > Data flow
- > Why?





# ExaCC – What is it? Deployment Models



### **On-Premises**

# **Exadata Database Machine**



Customer Data Center
Purchased
Customer Managed

## **Cloud at Customer**

Exadata Cloud @Customer



Customer Data Center
Subscription
Oracle Managed

## **Public Cloud**

**Exadata Cloud Service** 



Oracle Cloud
Subscription
Oracle Managed

Original source: Oracle

### ExaCC - What is it?

# Responsibilities



### The Database

- Customer managed
- Provisioned through the Oracle Cloud
- Customer patching
- All data is encrypted and not visible to Oracle
- Cost is based on consumption

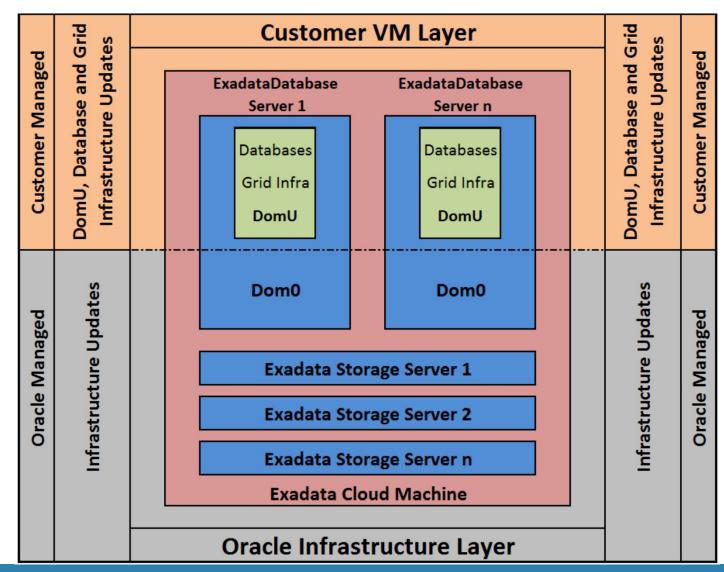
## Customer



### **Exadata Infrastructure**

- Oracle managed
- Transparently patched via Oracle Cloud
- Isolated from the customer
- Cost is based on the "shape" sizing

## ORACLE

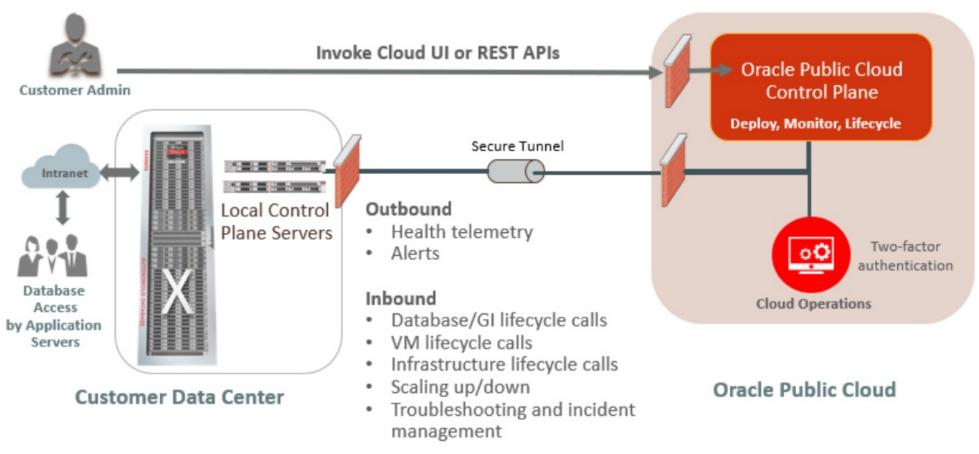

Original source: Oracle

## ExaCC - What is it?

# Responsibilities

Original source: Oracle






### ExaCC – What is it?

# Management flow



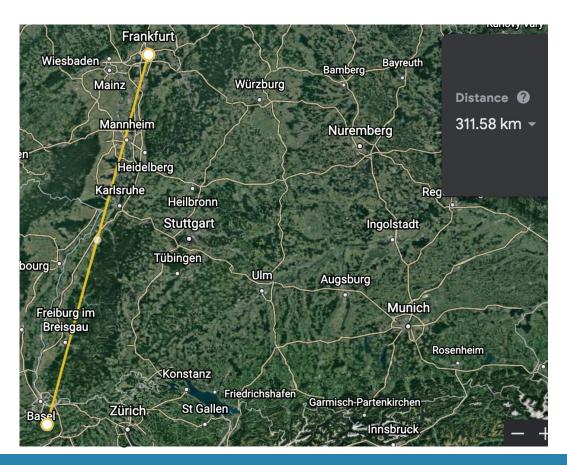
# Gen 2 Exadata Cloud at Customer— Management Flow



Original source: Oracle

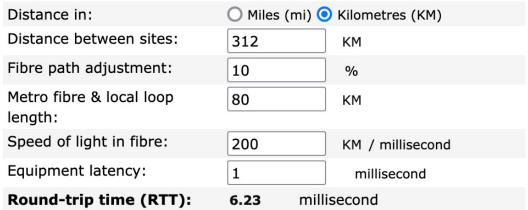


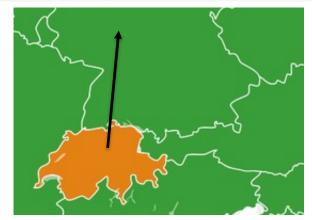
## Data Residency Law / Data Sovereignty


> Keep my data local in my DC






## Latency


> Keep application and DB close together



## WAN Latency Estimator

#### Enter a number in either field, then click outside of the text box.







## Latency

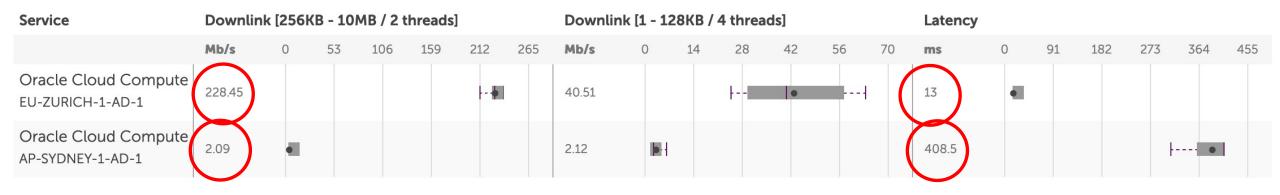
### Oracle Cloud Infrastructure Network Test

</>
/> Javascript Tag

Results for downlink and latency tests from your connection to Oracle Cloud Infrastructure. For test result details, place the mouse cursor over result bars in the table below.

| Service                                   | Downlink [1 - 128KB / 4 threads] |   |            |    | Downlink [256KB - 10MB / 2 threads] |    |    |        | Latency |    |     |     |        |     |    |   |    |    |    |    |    |
|-------------------------------------------|----------------------------------|---|------------|----|-------------------------------------|----|----|--------|---------|----|-----|-----|--------|-----|----|---|----|----|----|----|----|
|                                           | Mb/s                             | 0 | 11         | 22 | 33                                  | 44 | 55 | Mb/s   | 0       | 50 | 100 | 150 | 200    | 250 | ms | 0 | 10 | 20 | 30 | 40 | 50 |
| Oracle Cloud Compute<br>EU-FRANKFURT-AD-1 | 27.72                            |   | ·          |    | •                                   | -1 |    | 214.67 |         |    |     |     | H   P- |     | 17 |   |    |    |    |    |    |
| Oracle Cloud Compute<br>EU-ZURICH-1-AD-1  | 28.44                            |   | <b>}</b> - |    | •                                   |    |    | 214.01 |         |    |     |     | -      | (   | 14 |   | I  | H  |    |    |    |

http://cloudharmony.com/speedtest-for-oracle:compute-eu-zurich-1-and-oracle:compute-eu-frankfurt-1




## Latency

#### Oracle Cloud Infrastructure Network Test

</>
/> Javascript Tag

Results for downlink and latency tests from your connection to Oracle Cloud Infrastructure. For test result details, place the mouse cursor over result bars in the table below.



http://cloudharmony.com/speedtest-for-oracle:compute-eu-zurich-1-and-oracle:compute-ap-sydney-1



## Latency

| Oracle Cloud Compute - EU-FRANKFUR |                  |  |  |  |  |  |
|------------------------------------|------------------|--|--|--|--|--|
| Latency                            | <u></u>          |  |  |  |  |  |
| Status                             | Success          |  |  |  |  |  |
| Tests Performed                    | 12               |  |  |  |  |  |
| Tests Successful                   | 12               |  |  |  |  |  |
| Median                             | Javascripi 18 ms |  |  |  |  |  |
| Mean esult bars in the             | 17.92 ms         |  |  |  |  |  |
| Fastest                            | 17 ms            |  |  |  |  |  |
| Slowest                            | 19 ms            |  |  |  |  |  |
| 90th Percentile                    | 17 ms            |  |  |  |  |  |
| 75th Percentile                    | 17 ms            |  |  |  |  |  |
| 25th Percentile                    | 18.5 ms          |  |  |  |  |  |
| 10th Percentile                    | 19 ms            |  |  |  |  |  |
| Standard Deviation                 | 40 50.76         |  |  |  |  |  |
| Data Transferred                   | 72 B             |  |  |  |  |  |
| -                                  |                  |  |  |  |  |  |

| Amazon EC2 - eu-centra      | al-1       |
|-----------------------------|------------|
| Latency                     |            |
| Status                      | Success    |
| Tests Performed             | 12         |
| Tests Successful            | 12         |
| Median                      | 19 ms      |
| Mean                        | 19.25 ms   |
| Fastest Dars in the table t | 18 ms      |
| Slowest                     | 22 ms      |
| 90th Percentile             | 18.5 ms    |
| 75th Percentile             | 19 ms      |
| 25th Percentile             | 19.5 ms    |
| 10th Percentile             | 20 ms      |
| Standard Deviation 54       | 72 90 1.01 |
| Data Transferred            | 72 B       |

| Microsoft Azure Virtual | Machines - eu-w |
|-------------------------|-----------------|
| Latency                 |                 |
| Status                  | Success         |
| Tests Performed         | 12              |
| Tests Successful        | 12              |
| Median                  | 26 ms           |
| Mean                    | 26.08 ms        |
| Fastest 20 30           | 40 25 ms        |
| Slowest                 | 27 ms           |
| 90th Percentile         | 25.5 ms         |
| 75th Percentile         | 26 ms           |
| 25th Percentile         | 26.5 ms         |
| 10th Percentile         | 27 ms           |
| Standard Deviation      | 0.64            |
| Data Transferred        | 72 B            |
|                         |                 |

http://cloudharmony.com/speedtest-for-aws:ec2-eu-central-1-and-oracle:compute-eu-frankfurt-1-and-azure:compute-eu-west



ExaCC versus Public Cloud: Network Latency

- Speed of light in vacuum: 300m/microsecond
- Switches/Hubs/Firewalls add latency time
- E.g. Local latency: 0.25ms
- Public cloud latency: 3.5ms



Factor 14



## Low Latency is important if

- lots of data is transported between DB and App
- lots of fetches happen
- statements are called often (millions of times)

ExaCC may make the difference





Test the Latency between your client and database:



### (Elapsed Time - DB Time) / network round trips

```
SQL> exec dbms_output.put_line(to_char(:roundtrips_end - :roundtrips_begin)||' network round trips.');

4953 network round trips.

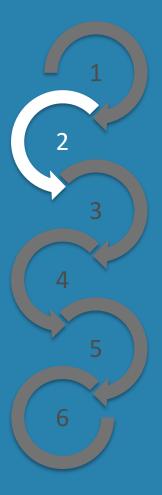
SQL> exec dbms_output.put_line(to_char((:time_end - :time_begin)*10)||' ms elapsed time.');

18870 ms elapsed time.

SQL> exec dbms_output.put_line(to_char((:db_time_end - :db_time_start)/1000)||' ms DB time.');

876.625 ms DB time.

SQL> exec dbms_output.put_line(to_char(round((((:time_end - :time_begin)*10)-((:db_time_end - :db_time_start)/1000))/(:roundtrips_end - :roundtrips_begin),3))||' ms latency per round trip.');


3.633 ms latency per round trip.
```

https://blog.dbi-services.com/script-to-calculate-the-network-latency-between-the-application-and-the-oracle-db-server

## **Customer Objectives**

- > Current state
- > Alternatives
- > Why ExaCC?
- > Target architecture





# **Objectives**Current state



#### Hardware

- > DBs running on Solaris servers
- > Capacity limit reached
- > Recurring performance problems
- > Reliability
- > Hardware maintenance: +15% per year

#### Software

- > DB license/support: +4% per year
- > No flexibility in terms of license with the fix number of CPUs
- > Need for additional licenses (Multitenant, Tuning Pack)

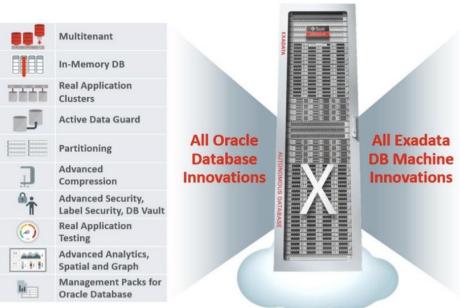


# **Objectives**Alternatives

services

- > Linux bare metal
- > VMWare
- > Oracle Database Appliance
- > Exadata Cloud@Customer

#### Criteria


- > Support
- > Patching
- > Price
- > Flexibility in terms of licensing
- > Availability
- > Isolation
- > Reuse of existing storage
- > DB options





#### Technical reasons

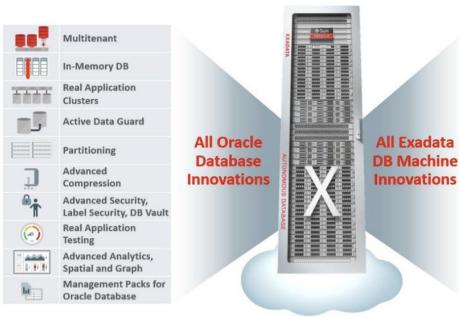
- > Flexibility and automation
- > Simplified management via Cloud portal and APIs
- > DB options included (multitenant, advanced security, compression, in-memory, etc.)
- > Hardware/firmware/hypervisor maintenance delegated to Oracle
- > High Availability (RAC cluster)
- > Engineered system (optimized for Oracle DBs)



Offload SQL to Storage **RoCE Fabric PMEM Commit and Data Accelerators** PCI Flash **Smart Flash Cache** Storage Indexes Columnar Flash Cache **Hybrid Columnar** Compression I/O Resource Management **Network Resource** Management In-Memory Fault **Direct-to-Wire Protocol** 

Original source: Oracle




### Security

- > Easy patching with bundles and rolling upgrades
- > Encrypted DB (customer has key)



#### Commercial reasons

- > Cloud model (flexibility)
- > Excellent conditions
  - > Hardware + Licenses included
  - > Pure Opex model
  - > Services offered





Original source: Oracle



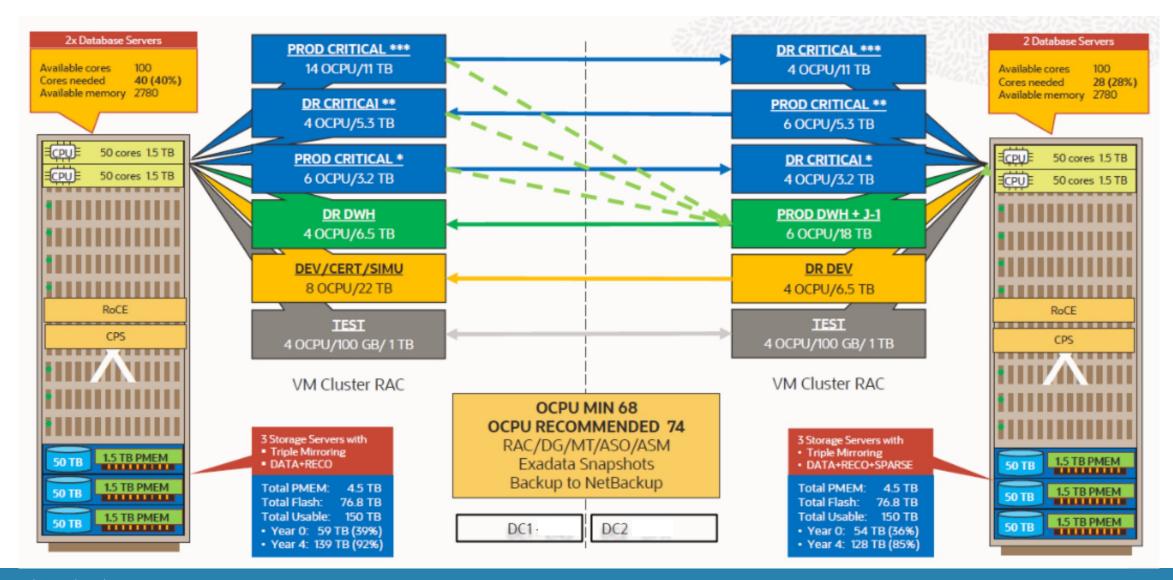
ExaCC X8M specs

|                        | Base*   | Quarter Rack | Half Rack | Full Rack |
|------------------------|---------|--------------|-----------|-----------|
| DB servers             | 2       | 2            | 4         | 8         |
| Max OCPU               | 48      | 100          | 200       | 400       |
| Total Memory           | 656 GB  | 2,780 GB     | 5,560 GB  | 11,120 GB |
| Storage servers        | 3       | 3            | 6         | 12        |
| Usable disk<br>storage | 74.8 TB | 149.7 TB     | 299.4 TB  | 598.7 TB  |

Original source: APACOUC

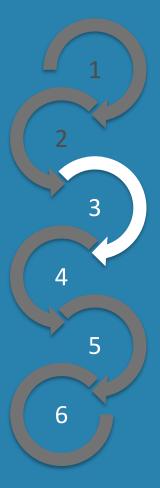


ExaCC X9M specs


|                        | Base*   | Quarter Rack               | Half Rack                  | Full Rack          |
|------------------------|---------|----------------------------|----------------------------|--------------------|
| DB servers             | 2       | 2                          | 4                          | 8                  |
| Max OCPU               | 48      | <del>100</del> 124         | <del>200</del> 248         | <del>400</del> 496 |
| Total Memory           | 656 GB  | 2,780 GB                   | 5,560 GB                   | 11,120 GB          |
| Storage servers        | 3       | 3                          | 6                          | 12                 |
| Usable disk<br>storage | 74.8 TB | <del>149.7 TB</del> 192 TB | <del>299.4 TB</del> 384 TB | 598.7 TB 769 TB    |

Original source: APACOUC

## **Objectives**


# Target architecture (X8M Quarter Rack)





- > From Capex to Opex
- > Education
- > Endian change
- > It's owner by Oracle







## From Capex to Opex

- > No (less) Capex
  - > No purchase of database server and storage
  - > Still need a bit more capex (networking, rack space) than for public cloud
  - > Easier budgeting and approval process
- > Opex
  - > Subscription
  - > Less Hardware required



# Education / Train the DBAs and Developers



### Exadata

- > Flash Cache
- > Storage Indexes
- > Smart Scans
- > HCC
- > IORM

## RAC / Grid Infrastructure

- > Clusterware
- > ASM



# Things to consider Education / Train the DBAs and Developers

# services

### Multitenant

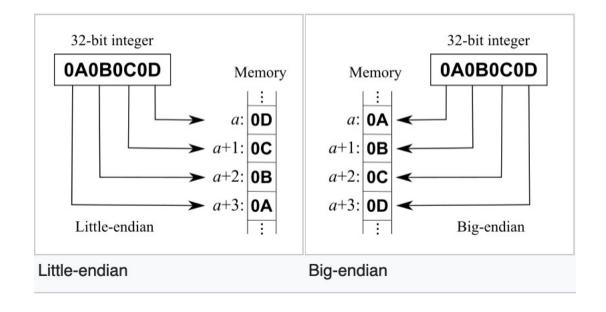
- > Operations
- > Advanced Administration

## Snapshots

- > PDB Snapshot Copy
- > Snapshot Hierarchy

### Additional features

- > Advanced security
- > Compression
- > In-Memory




# Things to consider Endian Change



## Solaris (Big Endian) -> Linux (Little Endian)

- > Limits the migration possibilities
- > Data Pump (expdp/impdp)
- > Logical replication (e.g. Golden Gate)
- > Transportable Tablespace
- > Full Transportable Export/Import
- > ZDM (Zero Downtime Migration)?



# Hardware is owned by Oracle



## Exadata owned by Oracle

- > New migration after 4-5 years
  - > New ExaCC
  - > On-Premises
  - > Public Cloud
- > Pro: Easier migration with more possibilities due to all pre-work has been done already
  - > Linux
  - > ASM
  - > Cluster
  - > Multitenant
  - > New tablespace concept



## Migration Approach / Planning

- > Migration Approach
- > Planning







## Pre-Migration study

- > Use the time before the Exadata is available
- > List all DBs
- > List resource consumption by all DBs
- > Plan Exadata resources required
- > Educate
- > Plan for changes
  - > Characterset
  - > Tablespaces
  - > Used features (e.g. compression)

## Migration

- > Doing
- > Plan time and steps for each and every DB-migration





### Measure what resources are needed on the Exadata

- > Get resource consumption from AWR-History (avg/peak db-time, db-cpu-time)
- > Compute the hardware requirements on the ExaCC

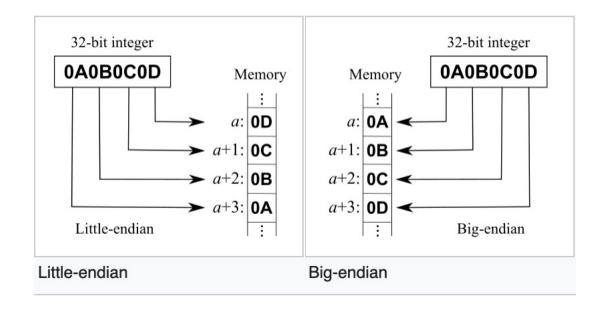
## Put together a list of all DBs

- > Criticality
- > Type
- > Data Guard
- > SGA/PGA-size
- > DB-params (like processes, undo\_retention, etc)
- > Characterset
- > Temp-Size Max
- > Migration method
- > Lowest Client version
- > Etc.





## Statistics and plans for the future

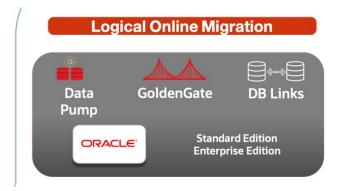

- > Versions
- > Growth trend
- > VM sizing

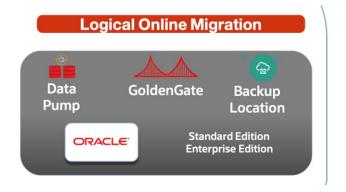




## Solaris (Big Endian) -> Linux (Little Endian)

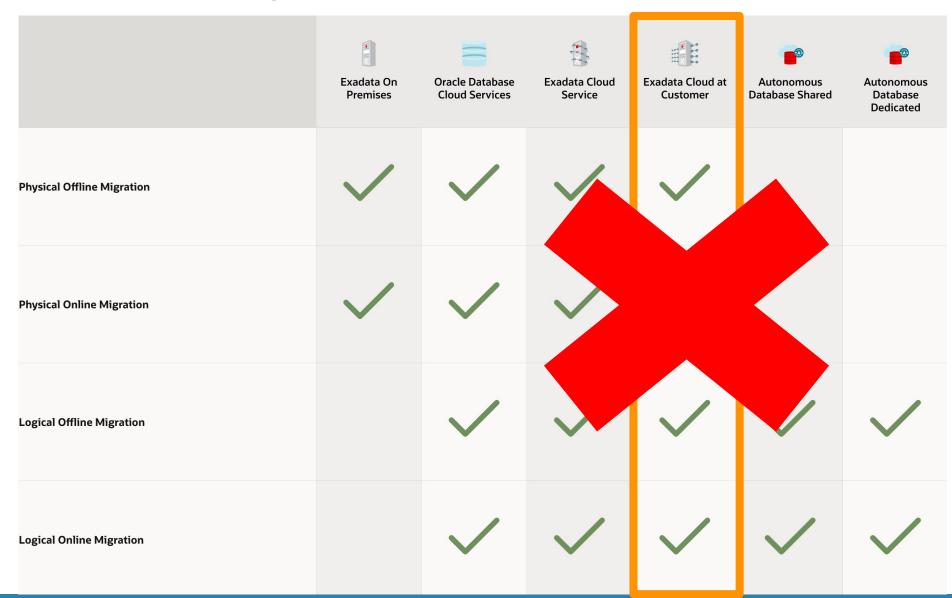
- > Data Pump (expdp/impdp)
- > Logical replication (e.g. Golden Gate)
- > Transportable Tablespace
- > Full Transportable Export/Import
- > ZDM (Zero Downtime Migration)?





# Migration Approach Zero Downtime Migration



### **ZDM allows**


- > Phyiscal Migration
  - > Offline
  - > Online
- > Logical Migration
  - > Offline (Data Pump)
    - > With Backup location
    - > With Database Links
  - > Online (Golden Gate + Data Pump)
    - > With Database Links
    - > With Backup location





### Zero Downtime Migration





Solaris as
Source was
not supported
when planning
the migration

Zero Downtime Migration V21.2



# Migration from Solaris & AIX based Source Databases

Support for Cross-Platform migration available Solaris and AIX based Source Databases.

Customers can leverage this feature racle Autonomous Database and Co-Managed Cloud Oracle Database targets all offline methodology.



Unfortunately too late



### Solaris (Big Endian) -> Linux (Little Endian)

- > Data Pump (expdp/impdp)
- > Logical replication (e.g. Golden Gate)
- > Transportable Tablespace
- > Full Transportable Export/Import
- ZDM (Zero Downtime Migration) ?





### Decision was to use the following methods

- > Data Pump (expdp/impdp) for almost all DBs
- > Logical replication (e.g. Golden Gate) for the most critical DBs in terms of downtime

### Why not using Transportable Tablespaces / Full Transportable Exp/Imp?

- > Change Tablespace concept
- > Change characterset during migration
- > Change from consolidated schemas to PDBs



### Backup & Recovery, Patching

- > History
- > Alternative methods
- > Other considerations





# Backup & Recovery History

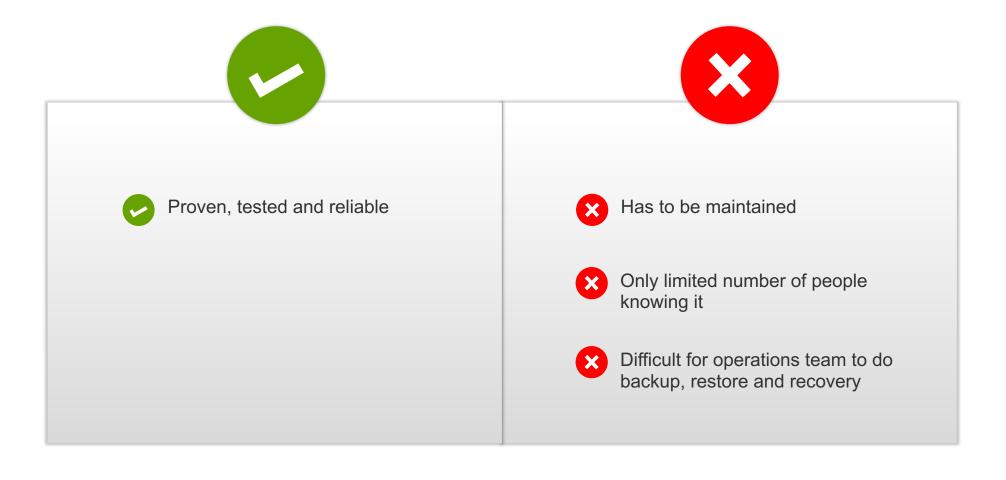


- > Backups using shell- and rman-scipts
- > Self developed
- > Limited number of DBAs knowing the details of the scripts used
- > Considerations when RMAN-Catalog or Tape Library is not available

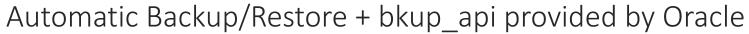


# Backup & Recovery Alternative methods

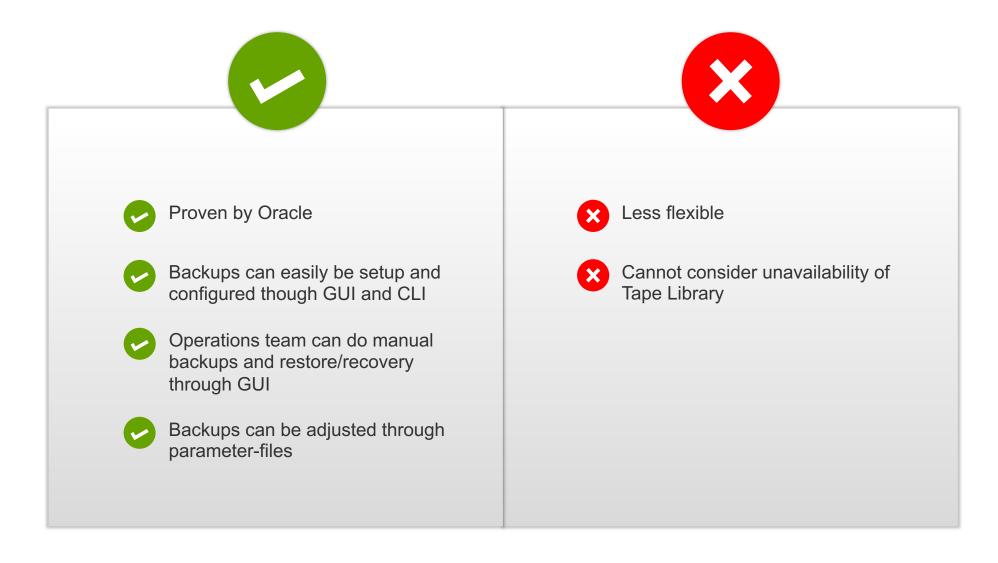



- > Adjust and use self developed scripts
- > Automatic Backup/Restore provided by Oracle
- > Tool bkup\_api
- > DMK DB-Backup




## Backup & Recovery

Adjust and use self-developed scripts






### Backup & Recovery







# Backup & Recovery DMK DB-Backup







- Proven by dbi services
- Backups can easily be setup and configured through parameter files
- Very flexible
- Easy monitoring and alerting
- Easy to setup considering availability issues with RMAN catalog and tape library

- No GUI for operations team
- DBA Team and operations team need to become familiar with it

# Backup & Recovery Decision



- > DMK DB-Backup
- > Use NFS as backup target with 5 days retention
- > Backup Backupsets from NFS to tape library regularly with 31 days retention
- > Backup to tape library to keep them 1 year once a month
- > Issue: Backup Job scheduling
  - > No oracle crontab on ExaCC
  - > DB-Jobs would require additional monitoring
  - > ssh only possible to public ip (not SCAN, not VIP)
  - > Had to write a script to connect to one of the Cluster nodes and start the backup <a href="https://blog.dbi-services.com/exadata-cloud-at-customer-considerations-for-backup-recovery/">https://blog.dbi-services.com/exadata-cloud-at-customer-considerations-for-backup-recovery/</a>



# Patching Oracle



### Patching performed by Oracle

- > Dom0
- > Network switches
- > Power distribution units (PDUs)
- > ILOM
- > Exadata Storage Servers



# **Patching**

### Customer



### Customer responsible for the DomU, GI, DB:

- > VM OS (DomU)
- > Grid Infratructure
- > DB (ORACLE\_HOME)

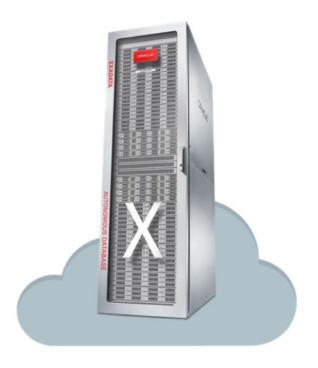
#### How to patch?

- > Cloud Service Console or
- > API
- > Manual patching (should be an exception)



### Summary






### Summary



### ExaCC is a good solution

- > If you have to keep your data local
  - > Security
  - > Latency
- > For Consolidation
- > To become faster
  - "Fastest Oracle DB-platform"
- > To use more Oracle features
- > To move from Capex to Opex
- > To Prepare for the future
  - > Data growth
  - > Digitalization

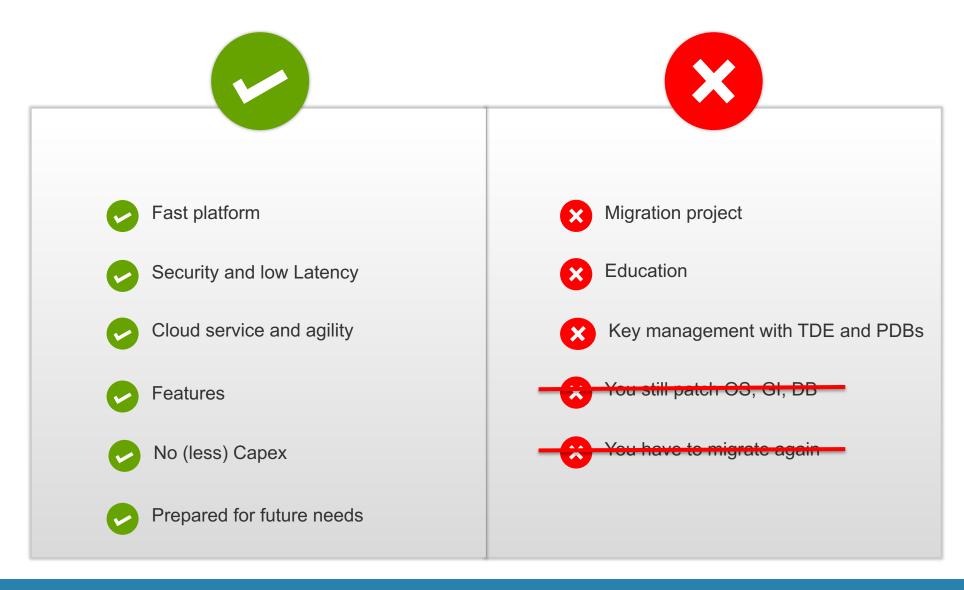




### Summary



#### Things to consider


- > The migration needs good planning
- > Education necessary
- > Use ZDM if possible
- > Use available features
- > Consolidate
- > Convert to AL32UTF8
- > Use Oracle's Cloud features
  - > Backup (to NFS)/Recovery
- > You have to migrate again





# **ExaCC**Summary







# Any questions?

Please do ask!



We would love to boost your IT-Infrastructure

How about you?