
GET ME OFF THAT F*CKING EXADATA

Anything invented after you’re thirty-five is against the natural order of things

Neil Chandler
Chandler Systems

Talk relates to 19C and later versions

Neil Chandler
Chandler Systems

It would seem that you have no useful skill or talent whatsoever, have you thought of going into presenting?

https://sym42.org

https://mashprogram.wordpress.com

GET ME OFF THAT F*CKING EXADATA

https://sym42.org/
https://mashprogram.wordpress.com/

Open your eyes and then open your eyes again.

Me? In the pub? With Martin?
About 2009… around the release of 11.2

"I'm working on a Exadata

I table scanned 2,000,000,000 rows,
about ½ TB….

… in 2 seconds
 on a table with no indexes!

Peter Scott
Data Warehouse Expert

Exadatas are Magic

GET ME OFF THAT EXADATA

GET ME OFF THAT EXADATA

Get Me Off That Effing Exadata

Exadatas are Magic

GET ME OFF THAT EXADATA

Get Me Off That Effing Exadata

Exadatas are Magic

GET ME OFF THAT EXADATA

Get Me Off That Effing Exadata

What is an Exadata?

GET ME OFF THAT EXADATA

Get Me Off That Effing Exadata

Typical ¼ Rack X9M

COMPUTE NODE
(Capacity On Demand CPU)

64 Cores
(up to) 2TB Memory

100 Gb RoCE

COMPUTE NODE
(Capacity On Demand CPU)

64 Cores
(up to) 2TB Memory

Storage Cell
32 CPU Cores

256GB Mem. 1.5TB Optane

Disks

Disks

SSD's (Flash Cache)

Storage Cell
32 CPU Cores

256GB Mem. 1.5TB Optane

Disks

Disks

SSD's (Flash Cache)

Storage Cell
32 CPU Cores

256GB Mem. 1.5TB Optane

Disks

Disks

SSD's (Flash Cache)

COMPUTE NODE
(Capacity On Demand CPU)

64 Cores
(up to) 2TB Memory

100 Gb RoCE

COMPUTE NODE
(Capacity On Demand CPU)

64 Cores
(up to) 2TB Memory

Storage Cell
32 CPU Cores

256GB Mem. 1.5TB Optane

D
i

s
k

s

D

i
s

k

s

SSD's

(Flash
Cache)

Storage Cell
32 CPU Cores

256GB Mem. 1.5TB Optane

D

i
s

k
s

D
i

s

k
s

SSD's
(Flash

Cache)

Storage Cell
32 CPU Cores

256GB Mem. 1.5TB Optane

D

i
s

k
s

D
i

s

k
s

SSD's

(Flash
Cache)

MAGICAL DISKS

Get Me Off That Effing Exadata

Storage Cell (HC)
32 CPU Cores

256GB Mem. 1.5TB Optane

Disks

Disks

SSD's (Flash Cache)

Disk - high capacity (18TB). 1,000 IOPS
(slow - several ms)

SSD - 0.5ms (6TB). 100,000 IOPS
(Oracle say 0.2ms)

Optane - 150µs (0.15ms). 1,600,000 IOPS
(Oracle say less than 19µs - 0.019ms)

Storage Cell (EF)
8x SSD's, no standard disks

Storage Cell (XT)
12x disks, no flash, no
Optane, no magic

COMPUTE NODE
(Capacity On Demand CPU)

64 Cores
(up to) 2TB Memory

100 Gb RoCE

COMPUTE NODE
(Capacity On Demand CPU)

64 Cores
(up to) 2TB Memory

Storage Cell
32 CPU Cores

256GB Mem. 1.5TB Optane

D
i

s
k

s

D

i
s

k

s

SSD's

(Flash
Cache)

Storage Cell
32 CPU Cores

256GB Mem. 1.5TB Optane

D

i
s

k
s

D
i

s

k
s

SSD's
(Flash

Cache)

Storage Cell
32 CPU Cores

256GB Mem. 1.5TB Optane

D

i
s

k
s

D
i

s

k
s

SSD's

(Flash
Cache)

MAGICAL DISKS

Get Me Off That Effing Exadata

Storage Cell (HC)
32 CPU Cores

256GB Mem. 1.5TB Optane

Disks

Disks

SSD's (Flash Cache)

Storage-Based Filtering
- Minimises data returned to DB nodes
- Processing of predicates / simple joins

Automatic Storage-Level Indexes

Offload of HCC Uncompress
& Scanning Encrypted Data

Lots of other bits and pieces
(some useful, some trivial but nice)

Exadata and Database Software Features – Analytics
• Unique Automatic Parallelization and Offload of Data Scans to storage
• Unique Filtering of Rows in Storage based on 'where' clause
• Unique Filtering of Rows in Storage based on columns selected
• Unique Storage Offload of JSON and XML Analytic Queries
• Unique Filtering of rows in Storage based on Join with other Table
• Unique Hybrid Columnar Compression
• Unique Storage Index Data Skipping
• Unique I/O Resource Management by User, Query, Service, DB, etc.
• Unique Automatic Transformation to Columnar Format in Flash Cache
• Unique Smart Flash Caching for Table Scans
• Unique Storage Offload of Index Fast Full Scans
• Unique Storage Offloads of Scans on Encrypted Data, with FIPS compliance
• Unique Storage Offload for LOBs and CLOBs
• Unique Storage Offload for min/max operations
• Unique Data Mining Offload to Storage
• Unique Reverse Offload to DB servers if Storage CPUs are Busy
• Unique Automatic Data Columnarization
• Unique Automatic Conversion of Data to In-Memory Formats when Loading into Flash Cache
Exadata and Database Software Features – OLTP
• Unique Persistent Memory Data Accelerator
• Unique Persistent Memory Commit Accelerator
• Unique Database Aware PCI Flash
• Unique Exadata Smart Flash Caching
• Unique Exadata Smart Flash Logging
• Unique Smart Write-back Flash Cache
• Unique I/O Prioritization by cluster, workload, DB or user to ensure QOS
• Unique Exafusion Direct-to-Wire Protocol
• Unique Database Intelligent Network Resource Management
• Unique Exachk full-stack validation
• Unique Full-stack security scanning
• Unique Database scoped security
• Unique Cell-to-Cell Rebalance preserving Flash Cache and Storage Index
• Unique Full-Stack Secure Erase
• Unique Instant Data File Creation
• Unique Smart Fusion Block Transfer
• Unique Control of Flash Cache Size per Database
• Unique In-Memory OLTP Acceleration
• Unique Undo-Block Remote RDMA Read
• Unique Support for 4000 Pluggable Databases per Container Database with Multitenant Option
Exadata and Database Software Features – High Availability
• Unique Instant Detection of Node or Cell Failure
• Unique In-Memory Fault Tolerance
• Unique Sub-second Failover of I/O on stuck disk or Flash
• Unique Offload backups to storage servers
• Unique Exadata Data Validation (extended H.A.R.D.)
• Unique Prioritize Recovery of Critical Database Files
• Unique Automatic Repair of Corrupt Disk Data By Reading Other Storage Servers
• Unique Avoidance of Read I/Os on Predictive failed disks
• Unique Confinement and power cycle of temporarily poor performing drives
• Unique Shutdown Prevention If Mirror Storage Server is Down
• Unique Detection and Disabling of Unreliable Network Links
• Unique Preservation of Storage Index on Rebalance

GET ME OFF THAT EXADATA

Get Me Off That Effing Exadata

Typical ¼ Rack X9M

COMPUTE NODE
(Capacity On Demand CPU)

64 Cores
(up to) 2TB Memory

100 Gb RoCE

COMPUTE NODE
(Capacity On Demand CPU)

64 Cores
(up to) 2TB Memory

Storage Cell
32 CPU Cores

256GB Mem. 1.5TB Optane

D
i

s
k
s

D

i
s
k
s

SSD's (Flash Cache)

Storage Cell
32 CPU Cores

256GB Mem. 1.5TB Optane

D
i

s
k
s

D
i
s

k
s

SSD's (Flash Cache)

Storage Cell
32 CPU Cores

256GB Mem. 1.5TB Optane

D
i

s
k
s

D
i
s

k
s

SSD's (Flash Cache)

The cost… € £ $ zł

Hardware : [€0.5m]
EE DB : €44,175 x64 Cores [€2.8m]
RAC : €21,390 x64 Cores [€1.4m]

Storage Cell licenses : € 9,300 x36 disks [€0.3m]

Total: €5.0m
+ 22% per annum Support

And you really should have
Prod, DR and Non-Production, so…

What's the Problem?

GET ME OFF THAT EXADATA

Get Me Off That Effing Exadata

Typical ¼ Rack X9M

COMPUTE NODE
(Capacity On Demand CPU)

64 Cores
(up to) 2TB Memory

100 Gb RoCE

COMPUTE NODE
(Capacity On Demand CPU)

64 Cores
(up to) 2TB Memory

Storage Cell
32 CPU Cores

256GB Mem. 1.5TB Optane

D
i

s
k
s

D

i
s
k
s

SSD's (Flash Cache)

Storage Cell
32 CPU Cores

256GB Mem. 1.5TB Optane

D
i

s
k
s

D
i
s

k
s

SSD's (Flash Cache)

Storage Cell
32 CPU Cores

256GB Mem. 1.5TB Optane

D
i

s
k
s

D
i
s

k
s

SSD's (Flash Cache)

3 of these… €15m

And you probably need
Tuning [€4,650 x 64 x 3] = €0.8m
Diagnostics [€4,650 x 64 x 3] = €0.8m
Partitioning [€10,695 x 64 x 3] = €2.0m
Advanced Security (TDE) [€13,950 x 64 x 3] = €2.6m
Active Data Guard [€10,695 x 64 x 3] = €2.0m

€23.2m for 3 x fully licensed QUARTER RACKs with options!

(but you will get a discount)

What's the Problem?
The cost… € £ $ zł

COMPUTE NODE
(Capacity On Demand CPU)

64 10 Cores enabled = 5 CPU

COST IS MAINLY LICENSES!

Get Me Off That Effing Exadata

Capacity On Demand - can we reduce that €23m bill?

COMPUTE NODE
(Capacity On Demand CPU)

64 10 Cores enabled = 5 CPU

Hardware €500k

Storage Cell CPU licenses[€ 9,300 x 36] €334k

EE DB [€44,175 x 10] €441k

RAC [€21,390 x 10] €213k

Tuning [€ 4,650 x 10] € 46k

Diagnostics [€ 4,650 x 10] € 46k

Partitioning [€10,695 x 10] €106k

Advanced Security (TDE) [€13,950 x 10] €139k

Active Data Guard [€10,695 x 10] €106k

Total: €2131k x 40% discount = €1278k x 3 = €3.8m

+ 22% support on purchase price

Enable the CPU cores you need

THAT’S STILL A LOT OF CASH!

Multiple exclamation marks,' he went on, shaking his head, 'are a sure sign of a diseased mind.

€3.8m!!!!!

EXADATA REPLACEMENT

Get Me Off That Effing Exadata

CTO

How much?
F**K!!!!!
Give me some
f***ing options!

"We need to replace some end-of-life Exadata's"

OPTIONS

Cake is not the issue here.

1. Stop using the apps and close the business?

2. Stay with Oracle, but move to commodity hardware

3. Migrate to PostgreSQL, on commodity hardware

4. Cloud (AWS / Azure / OCI)

5. Just buy the f**ing Exadatas!

We will sacrifice scalability, resilience, throughput, and/or
performance if we stop using Exa's

to specify the commodity hardware
we need to understand what the Exadata is doing

3 Resource Metrics:
CPU - It's an easy** metric to understand (if < 80%)

MEMORY - what's allocated. Its mostly fixed size...

I/O - A little trickier. We need to work on this

COMMODITY HARDWARE

Get Me Off That Effing Exadata

** the storage cells have CPU's in them…

WHAT ABOUT CPU?

Get Me Off That Effing Exadata

Each Storage Cell
has 32 CPU Cores

we must take that into account
(why? Isn't that just I/O?)

Storage Cell (HC)
32 CPU Cores

256GB Mem. 1.5TB Optane

Disks

Disks

SSD's (Flash Cache)

WHAT ABOUT CPU?

Get Me Off That Effing Exadata

The system I was measuring had 5
(relevant) storage cells.

CPU utilisation averaged 35%

(32 * 5) * 35% = up to 58 CPUs

Storage Cell (HC)
32 CPU Cores

256GB Mem. 1.5TB Optane

Disks

Disks

SSD's (Flash Cache)

MEASURING THE I/O

Life could be horrible in the wrong trouser of time.

Let's start with OEM

OEM has problems

- The scale is dynamic and not controllable

- The granularity is low - hourly here

- which means potentially misleading averages

The average over an hour of just under 8GB/s could be 80GB/s for 5 important minutes and 1GB/s for 55 minutes

Life could be horrible in the wrong trouser of time.

Real-Time Refresh in OEM has benefits

• NOT reproducible
• Scale Changes
• Hit F5 and its gone

so

Real-time is NOT
reliable/repeatable

Historic Views are NOT
granular

MEASURING THE I/O

Get Me Off That Effing Exadata

So, do it yourself, using V$ASM_DISK_IOSTAT ON EACH NODE!

Shows cumulative information, so capture, store and calc

SELECT dbname||':'||to_char(max(sysdate),'YYYY-MM-DD HH24.MI.SS')

 ||':'||round(sum(BYTES_READ)/1024/1024)

 ||':'||round(sum(BYTES_WRITTEN)/1024/1024)

 FROM v$asm_disk_iostat

 WHERE dbname = 'ORCL'

 GROUP BY dbname;

Get initial bytes
loop
 Wait
 Get new bytes
 Calc: (new-old)/wait and save it
End-loop
Graph the output in your tool of choice

Example output:

MEASURING THE I/O

Get Me Off That Effing Exadata

09:00-18:00 Average:
17GB/s

Regular Peaks: 30+GB/s
Rare Peaks: 55-60GB/s

Each colour is a different DB

MEASURING THE I/O

Get Me Off That Effing Exadata

This is the MINIMUM requirement
for a commodity storage array

we must take into account
Exadata disk magic

MEASURING THE I/O

MEASURING the MAGIC

Get Me Off That Effing Exadata

High-level measurements first, from AWR:
DBA_HIST_SYSSTAT

What I/O are we avoiding, on average, every day?

Get Me Off That Effing Exadata

WITH dhs_values
 as (SELECT /*+ MATERIALIZE */ to_char(dhsnap.begin_interval_time,'YYYY-MM-DD') begin_date,to_char(dhsnap.begin_interval_time,'DY') begin_day,dhs.STAT_NAME ,sum(dhs.value) value

 FROM dba_hist_sysstat dhs INNER JOIN
 dba_hist_snapshot dhsnap ON (dhs.snap_id = dhsnap.snap_id and dhs.dbid=dhsnap.dbid and dhs.instance_number=dhsnap.instance_number)

 WHERE dhs.stat_name IN ('cell physical IO bytes eligible for predicate offload'

 ,'physical read total bytes'

 ,'cell physical IO bytes saved by storage index'

 ,'cell physical IO interconnect bytes returned by smart scan'

 ,'cell IO uncompressed bytes'

 ,'physical write bytes')

 -- ensure we select only runs in the first minute of the day

 -- e.g. 2023-01-12 00:00:23 will match below ensuring we only get 1 run in the figures for the day!

 AND trunc(dhsnap.begin_interval_time) = trunc(dhsnap.begin_interval_time,'MI')

 GROUP BY to_char(dhsnap.begin_interval_time,'DY'),to_char(dhsnap.begin_interval_time,'YYYY-MM-DD'), dhs.STAT_NAME

ORDER BY 1,2),

dhs_change as (select dv.begin_day,dv.begin_date,dv.stat_name,dv.value-LAG(dv.value) OVER (PARTITION BY dv.stat_name ORDER BY dv.stat_name,dv.begin_date,dv.begin_day) value_change from dhs_values dv order by begin_date,stat_name)

select sys_context('userenv','db_unique_name') DB

 ,begin_day

 ,begin_date

 ,round(physical_reads/1024/1024/1024) PHYS_READ_GB

 ,round(eligible_offload/1024/1024/1024) eligiBLE_OFFLOAD_GB

 ,round(interconnect_returned_ss/1024/1024/1024) INTERCONNECT_RETURNED_GB

 ,round((eligible_offload/decode(physical_reads,0,1,physical_reads))*100) eligiBLE_OFFLOAD_PCT

 ,round(100-(interconnect_returned_ss/decode(eligible_offload,0,1,eligible_offload))*100) OFFLOAD_SAVED_PCT

 ,round(sindx_saved/1024/1024/1024) SAVED_BY_STORAGE_INDEX

 ,round(IOU/1024/1024/1024) UNCOMPRESSED_GB

 ,round((interconnect_returned_ss/decode(iou,0,1,iou))*100) RETURN_UNCOMPRESSED_PCT

 --,round(PW/1024/1024/1024) PHYS_WRITE_GB

 from dhs_change dc

PIVOT
(min(dc.value_change) for (stat_name) in

 (

 'cell physical IO bytes eligible for predicate offload' eligible_offload,

 'physical read total bytes' physical_reads,

 'cell physical IO bytes saved by storage index' sindx_saved,

 'cell physical IO interconnect bytes returned by smart scan' interconnect_returned_ss,

 'cell IO uncompressed bytes' iou,

 'physical write bytes' PW

)

)

where begin_date >= '2023-03-01'

order by begin_date

/

MEASURING the MAGIC

Get Me Off That Effing Exadata

DBA_HIST_SYSSTAT

MEASURING the MAGIC

Get Me Off That Effing Exadata

DBA_HIST_SYSSTAT

500-700TB reads per day

98% of that
offloaded
(processed on
storage cell)

90+% eligible for offload

An additional 14%
never happened
due to storage cell
indexes

Edited down to 10 working days

MEASURING the MAGIC

Get Me Off That Effing Exadata

DBA_HIST_SYSSTAT

09:00-18:00 Average: 17GB/s
becomes
19.3GB/s (storage indexes)
+ all that network traffic &
compute processing

Plus the Regular Peaks at 30+GB/s

add 14% storage indexes
that "never happened"
plus the offload…

Assume N/W of 100Gb/s
600TB=5,000,000 Gbits
=50,000seconds to transfer
=60% of a day

MEASURING the MAGIC

Get Me Off That Effing Exadata

Is this right?

Lets look another way
GV$SQL

with offload_data as (

 -- all sql where there is offload to the storage cells

 select sql_id, child_number, plan_hash_value phv, executions execs,

 IO_CELL_OFFLOAD_ELIGIBLE_BYTES,

 IO_INTERCONNECT_BYTES,

 PHYSICAL_READ_BYTES

 from gv$sql s

 where executions > 0

 and IO_CELL_OFFLOAD_ELIGIBLE_BYTES > 0

 and plan_hash_value <> 0

 and PARSING_SCHEMA_NAME not in (select username from dba_users where oracle_maintained='Y')),

 nonoffload_data as (

 -- all sql where there is no offload. show the io from the storage cells

 select sql_id, child_number, plan_hash_value phv, executions execs,

 IO_CELL_OFFLOAD_ELIGIBLE_BYTES,

 IO_INTERCONNECT_BYTES,

 PHYSICAL_READ_BYTES

 from gv$sql s

 where executions > 0

 and NVL(IO_CELL_OFFLOAD_ELIGIBLE_BYTES,0) = 0

 and plan_hash_value <> 0

 and PARSING_SCHEMA_NAME not in (select username from dba_users where oracle_maintained='Y'))

select sys_context('userenv','db_name')||' : SQL with offload ' info

 ,sum(IO_CELL_OFFLOAD_ELIGIBLE_BYTES)/1024/1024/1024 OFFLOADABLE_BYTES_GB

 ,sum(IO_INTERCONNECT_BYTES)/1024/1024/1024 IO_INTERCONNECT_BYTES_GB

 ,sum(PHYSICAL_READ_BYTES)/1024/1024/1024 PHYSICAL_READ_BYTES_GB

 ,100 - (100*(sum(IO_INTERCONNECT_BYTES) / sum(IO_CELL_OFFLOAD_ELIGIBLE_BYTES))) PCT_OFFLOADED

 from offload_data od

union all

select sys_context('userenv','db_name')||' : SQL with no offload ' info

 ,sum(IO_CELL_OFFLOAD_ELIGIBLE_BYTES)/1024/1024/1024 OFFLOADABLE_BYTES_GB

 ,sum(IO_INTERCONNECT_BYTES)/1024/1024/1024 IO_INTERCONNECT_BYTES_GB

 ,sum(PHYSICAL_READ_BYTES)/1024/1024/1024 PHYSICAL_READ_BYTES_GB

 ,0 PCT_OFFLOADED

 from nonoffload_data od

INFO OFFLOADABLE_BYTES_GB IO_INTERCONNECT_BYTES_GB PHYSICAL_READ_BYTES_GB PCT_OFFLOADED

------------------------------ -------------------- ------------------------ ---------------------- -------------

OLTP : SQL with offload 2,800,000 355,000 2,900,000 87.68

OLTP : SQL with no offload 0 275,000 275,000 0.00

note: some sql will live in the shared pool for a long time, hence 2.8PB of offloadable bytes

MEASURING the MAGIC

Get Me Off That Effing Exadata

this is very useful, but "general"
It does not reflect individual SQL's…

MEASURING the MAGIC

INDIVIDUAL SQL MAGIC

Get Me Off That Effing Exadata

GV$SQL

physical_read_bytes

io_cell_offload_eligible_bytes >0 means it's eligible for offload!
io_cell_offload_returned_bytes and if it is, what volume of data was returned

INDIVIDUAL SQL MAGIC

Get Me Off That Effing Exadata

GV$SQL
spool offloadsql.out append

select sys_context('userenv','db_unique_name') db

 ,sql_id

 ,sum(executions) executions

 ,round(sum(io_cell_offload_eligible_bytes)/1024/1024/1024) offload_eligible_GB

 ,round(sum(io_cell_offload_returned_bytes)/1024/1024/1024) offload_returned_GB

 ,round((sum(io_cell_offload_eligible_bytes) - sum(io_cell_offload_returned_bytes))/1024/1024/1024) actual_gb

 ,round(((sum(io_cell_offload_eligible_bytes) - sum(io_cell_offload_returned_bytes)) / decode(sum(io_cell_offload_eligible_bytes),0,1,(sum(io_cell_offload_eligible_bytes))))*100) io_saved_pct

 ,round(sum(elapsed_time)/1000000,2) elapsed_time_sec

 ,round((sum(physical_read_bytes)-sum(io_cell_offload_returned_bytes))/1024/1024/1024) gb_saved

 ,round((sum(io_cell_offload_eligible_bytes)-sum(io_cell_offload_returned_bytes))/1024/1024/1024) gb_eligible_saved

 ,round((sum(io_cell_offload_returned_bytes))/decode(sum(executions),0,1,sum(executions))/1024/1024/1024) gb_returned_per_exec

 ,round((sum(io_cell_offload_eligible_bytes)-sum(io_cell_offload_returned_bytes))/decode(sum(executions),0,1,sum(executions))/1024/1024/1024) gb_saved_per_exec

 ,round(sum(elapsed_time)/1000000/decode(sum(executions),0,1,sum(executions)),2) secs_per_exec

 ,round(((sysdate) - (to_date(min(first_load_time),'YYYY-MM-DD/HH24:MI:SS'))) * 86400 / sum(executions)) secs_since_exec

 ,(to_date(min(first_load_time),'YYYY-MM-DD/HH24:MI:SS')) first_load_time

 --,sql_text

from gv$sql

where 1=1

 -- exclud oracle accounts

 and PARSING_SCHEMA_NAME not in (select username from dba_users where oracle_maintained='Y')

 and executions>0

 and io_cell_offload_eligible_bytes > 0

-- and sql_id='&&sql_id'

group by sys_context('userenv','db_unique_name') ,sql_id -- all PHV's for a SQL_ID so we get the good and the bad in here, averaged

order by gb_eligible_saved desc

/

INDIVIDUAL SQL MAGIC

Get Me Off That Effing Exadata

GV$SQL
SQL_ID EXECs OFFLOAD_ELIGIBLE_GB OFFLOAD_RETURNED_GB IO_SAVED_PCT GB_SAVED GB_RET_PER_EXEC GB_SAVED_PER_EXEC

------ ----- ------------------- ------------------- ------------ ---------- --------------- ------------------

7x.... 2000 550,000 200 100 549,900 0 200

8c.... 80000 400,000 11000 97 399,000 0 5

a0.... 43000 220,000 8000 96 219,000 0 5

b4.... 43000 220,000 8000 96 219,900 0 5

.

.

.

"7x" saved 540TB of data transfer from
I/O subsystem to DB node for this SQL

These 4 SQL's avoid 1PB of data
transfer over their existence in the
shared pool

INDIVIDUAL SQL MAGIC

Get Me Off That Effing Exadata

So what to do with these SQL's?

Lets see how we get on without the Exadata Functionality:

1. Capture the SQL
2. Run the SQL and get the metrics from GV$SQL
3. Purge the Cursor
4. Switch off Exdata Functionality
5. Run the SQL and get the metrics from GV$SQL

INDIVIDUAL SQL MAGIC

Get Me Off That Effing Exadata

Exadata Functionality GV$SQL Metrics

SQL_ID 7x…………

IO_CELL_OFFLOAD_ELIGIBLE_GB 204

IO_CELL_OFFLOAD_RETURNED_GB 0

GB_SAVED 204

IO_SAVED_PCT 100%

ELAPSED_TIME_SEC 13sec

alter session set "CELL_OFFLOAD_PROCESSING"=false

alter session set "_KCFIS_STORAGEIDX_DISABLED"=true

alter session set "_BLOOM_FILTER_ENABLED"=false

alter session set "_BLOOM_PRUNING_ENABLED"=false

alter system flush shared_pool

GV$SQL Metrics without Exadata

SQL_ID 7x…………

IO_CELL_OFFLOAD_ELIGIBLE_GB 0

IO_CELL_OFFLOAD_RETURNED_GB 0

GB_SAVED 0

IO_SAVED_PCT 0

ELAPSED_TIME_SEC 608sec

In this case, the execution
plan was using a bloom filter

INDIVIDUAL SQL MAGIC

Get Me Off That Effing Exadata

Is this OK?

Does this SQL have a time-critical
aspect in the application?

Does 13 secs to 10 mins matter?

What about the other 300 SQL's with offload in this database?

How many key DB's are on this Exadata Cluster?
[of the dozen DB's on this cluster, 50% are "small/medium" <1TB - and won't care about having no Exadata Magic]

GV$SQL Metrics without Exadata

SQL_ID 7x…………

IO_CELL_OFFLOAD_ELIGIBLE_GB 0

IO_CELL_OFFLOAD_RETURNED_GB 0

GB_SAVED 0

IO_SAVED_PCT 0

ELAPSED_TIME_SEC 608sec

SYSTEM PERFORMANCE TESTING

Get Me Off That Effing Exadata

Do you have the capability to switch off the Exadata functionality on a full-sized
copy of the DB and test the system?

Do you have Real Application Testing?

Do you have the ability to replay or test Production-level volumes?

alter system set "CELL_OFFLOAD_PROCESSING"=false

alter system set "_KCFIS_STORAGEIDX_DISABLED"=true

alter system set "_BLOOM_FILTER_ENABLED"=false

alter system set "_BLOOM_PRUNING_ENABLED"=false

So what next?

COMMODITY HARDWARE

Get Me Off That Effing Exadata

Servers

any will do. Plenty of CPU and Memory is cheap.
(You will probably need to run Oracle Linux Virtualisation Manager (OLVM) to control licenses). Just don't use VMWare.

Storage
Are you using Hybrid Columnar Compression (HCC)

1 DB on this cluster is; 10TB of HCC "never-accessed" data stored at 20x compression
[Compress for Archive High]

Commodity H/W will need to have space for expanding the HCC data… 200TB+

However, all decent commodity H/W includes some native compression (4x)

Storage
Is there a (commodity) SAN which can cope with your workload?

COMMODITY HARDWARE

Get Me Off That Effing Exadata

A fully loaded DELL EMC VMAX 950F will do 150GB/s
and 6.7m IOPS.

But it's hard to call that "commodity"

19.3GB/s + n/w traffic
30+GB/s spikes

Storage
Is there a (commodity) SAN which can cope with your workload?

COMMODITY HARDWARE

Get Me Off That Effing Exadata

A Pure //XL170 will run at 20GB/s

2 x //XL170's synchronously linked will deliver 35GB/s
seamlessly with encryption and compression

so you will need 5 or 6… (Prod/DR/Non-Prod)

5 x //XL170's (with sufficient storage) costs more than 3
Exadatas (in initial costs)…

19.3GB/s + n/w traffic
30+GB/s spikes

POSTGRESQL

Get Me Off That Effing Exadata

PostgreSQL

Removal of licensing costs!

It's going to be cheaper for that reason… same major commodity storage issue though
But can PostgreSQL cope?

PG is very capable
migrating most small-to-medium sized systems [up to, say, 1TB] will work fine**

Partitioning, Vacuuming Issues, and On-Line capabilities mean VLDB's are still more
successful on Oracle, at the moment.
Native Encryption in the DB is Oracle-only (unless you buy EDB's new offering).
Storage-level encryption is inherently less secure for data at rest

**PL/SQL rewrite, and care needed in some
areas like long running transactions XID
wraparound and vacuuming, partitioning
challenges (no global indexes), NULL behaviours

CLOUD

Coming back to where you started is not the same as never leaving.

Cloud is perfect for elasticity, startups and irregular workloads.

Cloud is more expensive for known consistent workloads.
**unless you've really overprovisioned on-prem

AWS / Azure***/ non-Oracle Cloud
• double your license costs for the same CPU
• Enjoy paying the AWS 30% margin for the same compute power
• Storage at 35GB/s is hard to achieve and niche (as of today – tomorrow ?)

***today, there’s OCI in Azure. Tomorrow? Who knows?

CLOUD

Coming back to where you started is not the same as never leaving.

OCI incorporating Exadata Cloud At Customer

• has Exadata, so it’s the same hardware

• more flexible, and probably the cheapest “large” cloud offering out there

• costs about 20% more than on-prem by my recent costings
but! What are you getting for the 20%?
✓ TDE
✓ RAT
✓ Patching
✓ a nice GUI which dumbs down your DBA so they forget the basics

• You're probably not migrating to PG from there

Regardless of cloud provider, beware of egress costs and know what that means for you!

GET ME OFF THAT EXADATA

That just goes to show that you never know, although what it is we never know I suspect we'll never know.

What have we learned?

• Exadatas are complex
• They are also very very good
• You need to do some investigation to find

out how much you are using them
• If you have a system doing a lot of work

you may struggle to use commodity
hardware / standard Cloud computing
(to even match the minimum requirement)

GET ME OFF THAT EXADATA

That just goes to show that you never know, although what it is we never know I suspect we'll never know.

There's a cost to do business.

Exadatas seem expensive

Sometimes that cost, despite seeming high,
is the cheapest way forward

for now…

SO, WHAT HAPPENED?

That just goes to show that you never know, although what it is we never know I suspect we'll never know.

1. Stop using the apps and close the business?
2. Stay with Oracle, but move to commodity hardware
3. Migrate to PostgreSQL, on commodity hardware
4. Cloud (AWS / Azure / OCI)
5. Just buy the f**ing Exadatas!

They bought the f**ing Exadatas!

THANK
YOU

BLOG: http://chandlerdba.com
Twitter: @chandlerDBA
E: neil@chandler.uk.com

…and may your god go with you

GET ME OFF THAT EXADATA

asm activity - mbs read and write. nohup asm_activity.sh ORCL &

if [${#} -eq 0]

then

 echo "Please enter the database name as a parameter e.g. ORCL"

 exit

fi

db_name=$1

only works for 1 DB cos the code is simple

l_ro_prev=0

l_rw_prev=0

l_ro_diff=0

l_rw_diff=0

delay=60

1440=1 day, 10080=1 week

loops=1440

count=1

echo "DT:DB-${db_name}:Read MB/s averaged over ${delay}:Write MB/s averaged over ${delay}" | tee -a asm_activity.${db_name}.out

while [[${count} -lt ${loops}]]

do

let count=count+1

sqlplus -s / as sysdba << EOF

set head off feed off trimspool on pages 5000 lines 230

set termout off

spool asm_activity.${db_name}.tmp

select DBNAME||':'||to_char(max(sysdate),'YYYY-MM-DD HH24.MI.SS')

 ||':'||round(sum(BYTES_READ)/1024/1024)

 ||':'||round(sum(BYTES_WRITTEN)/1024/1024)

 from V\$ASM_DISK_IOSTAT

 where 1=1

 and dbname = '${db_name}'

 group by dbname;

spool off

EOF

 l_db=`cat asm_activity.${db_name}.tmp | grep -v "^$" | awk -F: '{print $1}'`

 l_dt=`cat asm_activity.${db_name}.tmp | grep -v "^$" | awk -F: '{print $2}'`

 l_ro=`cat asm_activity.${db_name}.tmp | grep -v "^$" | awk -F: '{print $3}'`

 l_rw=`cat asm_activity.${db_name}.tmp | grep -v "^$" | awk -F: '{print $4}'`

 let l_ro_diff=(${l_ro} - ${l_ro_prev})/${delay}

 let l_rw_diff=(${l_rw} - ${l_rw_prev})/${delay}

 l_ro_prev=${l_ro}

 l_rw_prev=${l_rw}

 echo "${l_dt}:${l_db}:${l_ro_diff}:${l_rw_diff}" | tee -a asm_activity.${db_name}.out

 sleep ${delay}

done

…and may your god go with you

asm_activity.sh

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

