
10/29/24

1

1

What’s Our Vector, Victor!
Navigating AI Vector Search

Presented on 24th October 2024
to

ITOUG
in Milan, Italy

by
Niall Mc Phillips - Long Acre sàrl

niall.mcphillips@longacre.ch
@Niall_McP

2

10/29/24

2

3

4

10/29/24

3

Extensive Cloud Experience

Early Adopter
5

About me: Niall Mc Phillips

Owner - Long Acre sàrl

Irish 🇮🇪 / 🇨🇭 Swiss living in Geneva, Switzerland.

• Oracle Developer and DBA for a long time
• Developing web applications with Oracle DB since 1995
• Developing with APEX since 2005 (HTML DB 1.6)

@Niall_McP
niall.mcphillips@longacre.ch

''

6

10/29/24

4

7

Key Benefits

Cool swag*, Digital awards for
social media, Oracle
CloudWorld pass*, & more

ACE Member Benefits

Cloud Account
$5k USD Cloud account*

Networking

In-person & virtual
networking opportunities for
ACEs to connect with product
development and each other.

Direct Access to Product
Management
Multiple direct
communication channels to
product management and
fellow ACEs

Exclusive Content

Exclusive monthly virtual
meetings with product
development teams +
engaging guest speakers

Travel Support
ACE Directors are eligible for
travel support to give
presentations or lead
workshops at conferences
globally

* for Pro and Director levels8

8

10/29/24

5

What is AI Vector Search

AI Vector Search enables you to search structured and
unstructured data based on its semantics or meaning, in
addition to its values.

10

Vectors

Vectors are derived from the semantic content of your data,
rather than the underlying words or image parts.

For example, a search for the term architecture could also find
results such as buildings, construction or even a famous
architect.

In this respect they are quite different to other search options
such as Oracle Search Indexes.

11

10/29/24

6

Vectors

From a simplistic point of view, a vector is simply a list of
numbers.

The number of dimensions that a vector has is how many
numbers it contains.

[0.8763, 1.8476, 0.2977, 2.8686,]

12

Vector Similarity

Vector similarity is calculated using the mathematical distance
between two vectors

[0.8763, 1.8476, 0.2977, 2.8686,]
[0.7836, 1.6748, 0.7729, 2.6868,]

13

10/29/24

7

Where do I get my vectors – Vector Embeddings

The creation / calculation of a vector from data is called EMBEDDING

There are many different embedding models, including those
provided by OpenAI, Cohere and many open-source models.

The model you choose will be influenced by the data that you are
vectorising: text, images, video, sound,

14

Where do I get my vectors – Vector Embeddings

For the purposes of today’s presentation, we’ll be using an OpenAI
model called: text-embedding-3-large

This model returns a vector of dimension 3000

15

10/29/24

8

Vector Embeddings – Using the OpenAI API

Calling the OpenAI API from Postman - Authentication

16

Vector Embeddings – Using the OpenAI API

Calling the OpenAI API from Postman
specify text to be vectorised and which model to use

17

10/29/24

9

Vector Embeddings – Using the OpenAI API
Calling the OpenAI API from Postman - Response

18

Embeddings 1 – example of setting up in PL/SQL

An example of writing a PL/SQL procedure to :

• Make a call to a 3rd party embedding API
• Retrieve the response user the APEX_WEB_SERVICE package
• Parse the response and extract the vector

19

10/29/24

10

Embeddings 1 – setting up in PL/SQL

First declare some variables:

v_clob clob;
vj_json json_object_t;
vj_obj json_object_t;
vj_data json_array_t;
vj_embedding json_array_t;

20

Embeddings 1 – setting up the Request Header

We’ll use apex_web_service.make_rest_request

 First set the headers:
 apex_web_service.g_request_headers(1).name := 'Content-Type’;
 apex_web_service.g_request_headers(1).value := 'application/json’;
 apex_web_service.g_request_headers(2).name := 'Authorization’;
 apex_web_service.g_request_headers(2).value := 'Bearer '||getOpenaiAPIKey();

* note: getOpenaiAPIKey() is a function to retrieve our stored API key for the OpenAI API

21

10/29/24

11

Embeddings 1 – getting the response

Call and get the response from the OpenAI Embedding API:

...

-- Get the response from the web service.

v_clob := apex_web_service.make_rest_request

 (p_url => 'https://api.openai.com/v1/embeddings',

 p_http_method => 'POST',

 p_body => '{"model": "'||p_model
 ||'", "input": ”’

 ||trim(lower(p_input))||'"}');
...
* note: p_model is 'text-embedding-3-large’
 p_input is the sentence that we want the embedding for

22

Embeddings 1 – extract the vector

Extract the vector from the response

...

-- Convert to JSON data type, then parse and extract embedding

vj_json := json_object_t(v_clob);

vj_data := vj_json.get_array('data'); -- extract the data object

vj_obj := treat(vj_data.get(0) as json_object_t); -- it's a 1-element array

vj_embedding := vj_obj.get_array('embedding'); -- extract the embedding

return vj_embedding; -- this is the vector as a JSON object

...

23

10/29/24

12

Embeddings 1 – convert the JSON vector to the
new 23ai Vector data type

Convert using the new 23ai to_vector function

...
 vv_vector vector;
...
 vv_vector := to_vector(vj_embedding.to_clob());
...

24

Embeddings 1 - use the embedding vector

Store it in a table

...
update sentences s
 set s.the_vector = vv_vector
 where id = p_id;
...

25

10/29/24

13

We can now use the embedding

View our sentences table with its vectors populated

26

Let’s look at the new data type: VECTOR

With 23ai VECTOR is a new data type fully integrated into
the database.

create table my_tab
(my_id integer,
 my_text varchar2(500),
 my_vector vector);

27

10/29/24

14

VECTOR data type

28

VECTOR examples – define columns

CREATE TABLE my_vect_tab

 (v1 VECTOR(3, FLOAT32),

 v2 VECTOR(2, FLOAT64),

 v3 VECTOR(1, INT8),

 v4 VECTOR(1, *),

 v5 VECTOR(*, FLOAT32),

 v6 VECTOR(*, *),

 v7 VECTOR);

Table created.

29

10/29/24

15

VECTOR examples – show

30

New Vector function – VECTOR_DISTANCE
VECTOR_DISTANCE calculates the distance between two

vectors

vector_distance (vector1, vector2, method)

returns a number containing the distance between vectors 1
and 2, calculated according the the method specified in the
3rd parameter.

31

10/29/24

16

VECTOR_DISTANCE - methods
• COSINE (function alias COSINE_DISTANCE)

• EUCLIDEAN (a.k.a. L2 – function alias L2_DISTANCE)

• EUCLIDEAN_SQUARED
• MANHATTAN (a.k.a. L1 – function alias L1_DISTANCE)

• DOT (a.k.a. INNER_PRODUCT – fiunction alias INNER_PRODUCT)

• HAMMING

32

VECTOR_DISTANCE – EUCLIDEAN and
EUCLIDEAN_SQUARED

(L2)

Measure the distance between the
vector co-ordinates that are being
compared.

33

10/29/24

17

VECTOR_DISTANCE – COSINE

Measures the cosine of the angle
between the vectors being
compared.

This is the most commonly used
method.

34

VECTOR_DISTANCE – MANHATTAN
(L1)

a.k.a. taxi cab distance

Sums the distance between the
dimensions of the two vectors

35

10/29/24

18

VECTOR_DISTANCE – DOT product
(INNER PRODUCT)

Multiplies the size of each vector by
the cosine of their angle.

36

VECTOR_DISTANCE – Hamming

Hamming is like an an XOR between
the two vectors that measures the
number of differences.

Often used to detect network
anomalies.

37

10/29/24

19

VECTOR_DISTANCE – Example
select vector_distance

 (s.the_vector, P_SEARCH_VECTOR, COSINE) as vdist,

 s.the_text,

 s.id

 from sentences s

 order by vdist asc

 fetch first 8 rows only;

38

Some other Vector functions

TO_VECTOR / VECTOR

Constructs a vector from character data

FROM_VECTOR/VECTOR_SERIALIZE

Converts a vector to VARCHAR2 or CLOB

...

39

10/29/24

20

AI Vector Search - DEMOS

40

AI Vector Search – PL/SQL Packages

• DBMS_VECTOR

Simplifies common operations with Oracle AI Vector Search, such as extracting chunks or embeddings from user data,
generating text for a given prompt, or creating vector indexes.

• DBMS_VECTOR_CHAIN

Enables advanced operations with Oracle AI Vector Search, such as chunking and embedding data along with text
generation and summarization capabilities.
It is more suitable for text processing with similarity search, using functionality that can be pipelined together for an end-to-
end search.

41

10/29/24

21

Embeddings 2 – DBMS_VECTOR

Example using the DBMS_VECTOR package

• Create credentials for a 3rd party embedding API

42

Embeddings 2 – create credentials
declare
 jo json_object_t;
begin
 jo := json_object_t();
 jo.put('access_token', 'sk-******'); -- api key
 dbms_vector.create_credential(
 credential_name => 'NIALL_OPENAI_CRED',
 params => json(jo.to_string));
end;
/

43

10/29/24

22

Embeddings 2 – create credentials

44

Embeddings 2 – utl_to_embedding function

• Create credentials for a 3rd party embedding API
• Use the dbms_vector.utl_to_embedding function to embed and

return a vector

DBMS_VECTOR.UTL_TO_EMBEDDING
 (DATA IN CLOB,
 PARAMS IN JSON default NULL)
 return VECTOR

45

10/29/24

23

Embeddings 2 – utl_to_embedding function
parameters example

{
 "provider": "openai",
 "credential_name": "NIALL_OPENAI_CRED",
 "url": "https://api.openai.com/v1/embeddings",
 "model": "text-embedding-3-large"
}

46

Embeddings 2 – utl_to_embedding function
usage example

declare

 v_vector vector;

begin

 v_vector := dbms_vector.utl_to_embedding

 (data => 'Buongiorno Italia!',

 params => json(embeddings.getOpenaiAPIEmbeddingParams()));

dbms_output.put_line(embeddings.serializeMyVector(v_vector));

end;

/

47

10/29/24

24

Embeddings 2 – utl_to_embedding function
usage example

48

“Chunking” - splitting your input into smaller
pieces

Models usually have a limit for how many tokens they can vectorise at a
time. So we often have to breakup a text or a document into “chunks”
before vectorising it.

This process is called “chunking”

49

10/29/24

25

Chunking with DBMS_VECTOR utl_to_chunks

We can use the utl_to_chunks function which returns an array of vectors
along with some metadata in JSON format

DBMS_VECTOR.UTL_TO_CHUNKS

 (DATA IN CLOB (or VARCHAR2)

 PARAMS IN JSON default NULL)

return VECTOR_ARRAY_T;

51

Chunking with DBMS_VECTOR utl_to_chunks
Parameters example:

 { "by":"words",
 "max":"100",
 "overlap":"0",
 "split":"recursively",
 "normalize":"all" }

utl_to_chunks

52

10/29/24

26

Chunking with DBMS_VECTOR utl_to_chunks
select t.text_key doc,

 json_value(c.column_value, '$.chunk_id' returning number) as id,

 json_value(c.column_value, '$.chunk_offset' returning number) as offset,

 json_value(c.column_value, '$.chunk_length' returning number) as len,

 json_value(c.column_value, '$.chunk_data') as text

 from texts_for_chunking t,

 dbms_vector.utl_to_chunks

 (t.text,

 json('{ "by":"words",

 "max":"100",

 "overlap":"0",

 "split":"recursively",

 "normalize":"all" }')) c;

utl_to_chunks

53

Chunking with DBMS_VECTOR utl_to_chunksutl_to_chunks

54

10/29/24

27

Embedding the chunks with DBMS_VECTOR

Uses utl_to_embeddings which accepts the output from
utl_to_chunks as a parameter

select t.*,

 et.column_value as vector_value

 from texts_for_chunking t,

 dbms_vector.utl_to_embeddings

 (dbms_vector.utl_to_chunks

 (t.text,

 json('{"by": "words", "max": 100}')),

 json(embeddings.getOpenaiAPIEmbeddingParams())) et;

55

AI Vector Search – beyond the basics
Importing pre-trained models

Import pre-trained embedding ML models for vector generation
within the DB

• Open Neural Network Exchange (ONNX) is an open format built to
represent machine learning models

• https://onnx.ai/

56

10/29/24

28

AI Vector Search – beyond the basics
Vector Indexes and Approximate Similarity

Vector Indexes and approximate similarity

Vector indexes are a class of specialized indexing data structures designed to accelerate
similarity searches using high-dimensional vectors.

They use techniques such as clustering, partitioning, and neighbour graphs to group vectors
representing similar items, which drastically reduces the search space, thereby making the
search process quite efficient.

58

59

10/29/24

29

60

