What’s Our Vector, Victor!
Navigating Al Vector Search

Presented on 24th October 2024
to

ITOUG

in Milan, Italy
by
Niall Mc Phillips - Long Acre sarl
niall. ncphillips@longacre.ch
@Niall_McP

long acre

Extensive Cloud Experience

About me: Niall Mc Phillips

Owner - Long Acre sarl

Irish 11/ B Swiss living in Geneva, Switzerland.

Oracle ACE SYMPOSIUMLI

Pro

* Oracle Developer and DBA for a long time
» Developing web applications with Oracle DB since 1995
» Developing with APEX since 2005 (HTML DB 1.6)

O @niall_McP
niall.mcphillips@longacre.ch

Q Oracle ACE

The Oracle ACE Program

400+ technical experts helping peers globally

E aceprogram ww@oracle.com

The Oracle ACE Program recognizes and rewards community members for their technical
and community contributions to the Oracle community

3 membership levels: Director, Pro, and Associate

Nominate yourself or a colleague at ace.oracle.com/nominate

Learn more at ace.oracle.com

05@%&%%

X @oracleace

m Oracle ACE Program Group

QOracleAcE
ACE Member Benefits

E Key Benefits
©;

Cool swag*, Digital awards for
social media, Oracle

CloudWorld pass*, & more

PO _

EI@@ Exclusive Content
Exclusive monthly virtual
meetings with product
development teams +
engaging guest speakers

8 *for Pro and Director levels

AR

Direct Access to Product
Management

Multiple direct
communication channels to
product management and
fellow ACEs

Networking

In-person & virtual
networking opportunities for
ACEs to connect with product
development and each other.

8 ,

T

(o

-~

Cloud Account
$5k USD Cloud account*

Travel Support

ACE Directors are eligible for
travel support to give
presentations or lead
workshops at conferences
globally

B

What is Al Vector Search

Al Vector Search enables you to search structured and
unstructured data based on its semantics or meaning, in
addition to its values.

n

long acre

10

Vectors

Vectors are derived from the semantic content of your data,
rather than the underlying words or image parts.

For example, a search for the term architecture could also find
results such as buildings, construction or even a famous
architect.

In this respect they are quite different to other search options
such as Oracle Search Indexes.
itttz

long acre

11

Vectors

From a simplistic point of view, a vector is simply a list of
numbers.

The number of dimensions that a vector has is how many
numbers it contains.

[0.8763, 1.8476, 0.2977, 2.8686,]

long acre

12

Vector Similarity

Vector similarity is calculated using the mathematical distance
between two vectors

[0.8763, 1.8476, 0.2977, 2.8686,]
[0.7836, 1.6748, 0.7729, 2.6868,]

long acre

13

Where do | get my vectors — Vector Embeddings

The creation / calculation of a vector from data is called EMBEDDING

There are many different embedding models, including those
provided by OpenAl, Cohere and many open-source models.

The model you choose will be influenced by the data that you are
vectorising: text, images, video, sound,

n

long acre

14

Where do | get my vectors — Vector Embeddings

For the purposes of today’s presentation, we’ll be using an OpenAl
model called: text-embedding-3-large

This model returns a vector of dimension 3000

”

long acre

15

Vector Embeddings — Using the OpenAl API

Calling the OpenAl API from Postman - Authentication

fi Embedding
POST v https://api.openai.com/vi/embeddings
Params Authorization® Headers (12) Body pts t
Auth Type
Token
Bearer Token v

tion header wi

more about Bearer Token a

-

long acre

16

Vector Embeddings — Using the OpenAl API

Calling the OpenAl API from Postman
specify text to be vectorised and which model to use

i Embedding
POST v

https://api.openai.com/vi/embeddings

Params Authorizatione Headers (12) Body e

Scripts ests Settings
none form-data x-www-form-urlencoded © raw binary GraphQL JSON v
11
2 ‘ "input": "Geneva is situated at the end of the lake that shares its name 'Lake Geneva'
3 "model": "text-embedding-3-large"
4 %

) save v~ Share

Cookies

Beautify

”

long acre

17

Vector Embeddings — Using the OpenAl API
Calling the OpenAl API from Postman - Response

Body Cookies (2) Headers (25) Test Results
Pretty Raw review Visualize JSON v o
1 i
2 "object": "list",
3 "data": [
4 {
"object": "embedding",
6 "index": O,
7 "embedding": [
8 -0.025723679,
9 -0.001198068,
10 -0.010066863,
b 0.01498899,
12 -0.035073247,
13 -0.04261721,
14 0.0186002,
15 0.0117920805, | ([
16 0.0029263776, MM&
17 -0.027826095

long acre

18

Embeddings 1 — example of setting up in PL/SQL
An example of writing a PL/SQL procedure to :

* Make a call to a 3rd party embedding API
* Retrieve the response user the APEX_WEB_SERVICE package
* Parse the response and extract the vector

”

long acre

19

Embeddings 1 — setting up in PL/SQL

First declare some variables:

v_clob clob;

v]j_Jjson json_object t;
v]j_obj json_object t;
v]j_data json_array t;

v]j_embedding Jjson_ array t;

n

long acre

20

Embeddings 1 — setting up the Request Header

We’'ll use apex_web_service.make_rest _request

First set the headers:

apex_web_service.g_request headers(l) .name

'Content-Type’ ;
'application/json’ ;
'"Authorization’ ;

'Bearer '||getOpenaiAPIKey() ;

apex_web_service.g_request_headers(l) .value

apex_web_service.g_request headers(2) .name

apex_web_service.g_request_headers(2) .value

* note: getOpenaiAPIKey () is a function to retrieve our stored API key for the OpenAI API

”

long acre

21

Embeddings 1 — getting the response

Call and get the response from the OpenAl Embedding API:

-- Get the response from the web service.
v_clob := apex web service.make rest_ request
=> 'https://api.openai.com/vl/embeddings',

(p_url

p_http method

p_body

* note: p_model is 'text-embedding-3-large’

=> '"{"model":
I I T , llinputll :

"'||p_model

p_input is the sentence that we want the embedding for

| Itrim(lower (p_input))||'"}');

-

long acre

22

Embeddings 1 — extract the vector

Extract the vector from the response

-- Convert to JSON data type, then parse and extract embedd s
vj_json := json_object_t(v_clob);

vj_data := vj_json.get_array('data');
vj_obj := treat(vj_data.get(0) as json object t);

16
17

-- extract the data object

"object": "list",
“data": [

1

“object”: "embedding",

“index": 0,

“embedding": [
-0.025723679,
-0.001198068,
-0.010066863,
0.01498899,
-0.035073247,
-0.04261721,
0.0186002,
0.0117920805,
0.0029263776,
-0.A27826095

-- it's a l-element array

vj_embedding := vj_obj.get_array('embedding'); -- extract the embedding

return vj_embedding;

-- this is the vector as a JSON object

”

long acre

23

Embeddings 1 — convert the JSON vector to the
new 23ai Vector data type

Convert using the new 23ai fo_vector function

vv_vector vector;

vv_vector := to vector(vj_embedding.to clob());

ittt 2
long acre
24
Embeddings 1 - use the embedding vector
Store it in a table
update sentences s
set s.the_vector = vv_vector
where id = p_id;

long acre

25

We can now use the embedding

View our sentences table with its vectors populated

sql> select id, the_text, the_vector from sentences fe first 10 rows only;

ID THE_TEXT THE_VECTOR

1 Ljubljana, Slovenia is admired for its charming city center and lively atmosphere. [3.92498486E-002,3.8745027E-002,-1.
2 Split, Croatia is famous for the ancient Diocletian's Palace and its Adriatic coast. [3.04311961E-002,-4.54256348E-002,
3 Ljubljana, Slovenia is recognized for its friendly people and green spaces. [3.85775864E-002,4.74944785E-002, -1
4 sofia, Bulgaria is celebrated for its Orthodox churches and vibrant city life. [1.3237983E-002,-7.41957454E-003, -1
5 Bucharest, Romania is known for its mix of historical and modern architecture. [7.14117195E-003,-1.28046563E-003, -
6 Belgrade, Serbia is admired for its fortresses and riverside setting. [5.60169034E-002,7.53022218E-003, -2
7 Sarajevo, Bosnia and Herzegovina is famous for its diverse culture and historical significance. [5.80895729E-002,-1.25712929E-002, -]
8 Tirana, Albania is recognized for its colorful architecture and dynamic cultural scene. [2.69968752E-002,-2.40882835E-003, -
9 Skopje, North Macedonia is noted for its eclectic blend of old and new buildings. [3.20351236E-002,1.77446958E-002, -2
10 Pristina, Kosovo is admired for its youthful energy and growing arts scene. [4.37207781E-002,1.52237155E-002, 2]

10 rows selected.

-

long acre

26

Let’s look at the new data type: VECTOR

With 23ai VECTOR is a new data type fully integrated into
the database.

create table my_tab
(my_id integer,
my_text varchar2(500),
my_vector vecton);

”

long acre

27

VECTOR data type

Possible Declaration Format

Explanation

VECTOR (*, *)

Vectors can have an arbitrary number of
dimensions and formats. VECTOR and
VECTOR (*, *) are equivalent.

VECTOR(number_of_dimensions, *)
equivalent to
VECTOR(number_of_dimensions)

Vectors must all have the specified number of
dimensions or an error is thrown. Every vector will
have its dimensions stored without format
modification.

VECTOR(*, dimension_element_format)

Vectors can have an arbitrary number of
dimensions, but their format will be up-converted
or down-converted to the specified dimension
element format (INT8, FLOAT32, or FLOAT64).

A vector can be NULL but its dimensions cannot (for example, you cannot have a
VECTOR with a NULL dimension such as [1.1, NULL, 2.2]).

n

long acre

28

VECTOR examples — define columns

CREATE TABLE my vect_ tab

(vl VECTOR (3, FLOAT32),
v2 VECTOR (2, FLOAT64),

v3 VECTOR(1l, INTS8),
v4 VECTOR(1, *),

v5 VECTOR(*, FLOAT32),

v6 VECTOR(*, *),
v7 VECTOR) ;

Table created.

”

long acre

29

VECTOR examples — show

DESC my_ vect_tab;

Name Null? Type

V1 VECTOR(3 , FLOAT32)
V2 VECTOR(2 , FLOAT64)
v3 VECTOR(1 , INT8)

v4 VECTOR(1 , *)

V5 VECTOR (* , FLOAT32)
V6 VECTOR (* , *)

v VECTOR (* , *)

n

long acre

30

New Vector function - VECTOR_DISTANCE

VECTOR_DISTANCE calculates the distance between two
vectors

vector_distance (vector1, vector2, method)

returns a number containing the distance between vectors 1
and 2, calculated according the the method specified in the
3rd parameter.

”

long acre

31

VECTOR_DISTANCE - methods

COSINE (function alias COSINE_DISTANCE)
EUCLIDEAN (a.k.a. L2 - function alias L2_DISTANCE)
EUCLIDEAN_SQUARED

MANHATTAN (a.k.a. L1 - function alias L1_DISTANCE)

DOT (a.k.a. INNER_PRODUCT — fiunction alias INNER_PRODUCT)
HAMMING

n

long acre

32

VECTOR_DISTANCE - EUCLIDEAN and

EUCLIDEAN_SQUARED
(L2)

compared.

Measure the distance between the
vector co-ordinates that are being

”

long acre

33

VECTOR_DISTANCE - COSINE

cos(a) = 0.86
somewhat similar
distance = 014 (1-0.86)

Measures the cosine of the angle
between the vectors being
compared.

This is the most commonly used
method.

n

long acre

34

VECTOR_DISTANCE -

(L1)

. a(my, my)

MANHATTAN

a.k.a. taxi cab distance

Sums the distance between the
dimensions of the two vectors

”

long acre

35

VECTOR_DISTANCE - DOT product
(INNER PRODUCT)

the cosine of their angle.

" |a]cosa

Multiplies the size of each vector by

”

long acre

36

VECTOR_DISTANCE - Hamming

number of differences.

Often used to detect network

B|11011010 :
anomalies.

XOR Bit Operation:

01001100

Hamming Distance = 3

Hamming is like an an XOR between
A|l|1 0010110 the two vectors that measures the

”

long acre

37

VECTOR_DISTANCE — Example

select vector_distance
(s.the_vector, P_SEARCH VECTOR, COSINE) as vdist,
s.the_text,
s.id
from sentences s
order by vdist asc

fetch first 8 rows only;

n

long acre

38

Some other Vector functions

TO_VECTOR / VECTOR

Constructs a vector from character data

FROM_VECTOR/ VECTOR_SERIALI ZE
Converts a vector to VARCHAR2 or CLOB

”

long acre

39

Al Vector Search - DEMOS

n

long acre

40

Al Vector Search — PL/SQL Packages

+ DBMS_VECTOR

Simplifies common operations with Oracle Al Vector Search, such as extracting chunks or embeddings from user data,

generating text for a given prompt, or creating vector indexes.

+ DBMS_VECTOR_CHAIN

Enables advanced operations with Oracle Al Vector Search, such as chunking and embedding data along with text

generation and summarization capabilities.

It is more suitable for text processing with similarity search, using functionality that can be pipelined together for an end-to-

end search.

”

long acre

41

Embeddings 2 - DBMS_VECTOR

Example using the DBMS_VECTOR package

» Create credentials for a 3rd party embedding API

42
Embeddings 2 — create credentials
declare
jo json_object t;
begin
jo := json_object t():;
jo.put('access_token', 'sk-****x*x!'); -- apji key
dbms vector.create credential (
credential name => 'NIALL OPENAI CRED',
params => Jjson(jo.to_string));
end; o

43

Embeddings 2 — create credentials
SQL>
SQL> set echo on
SQL> declare retrieve the API
2 jo json_object_t; key from table
3 begin
4 jo := json_object_tQ);
5 jo.put('access_token', embeddings.getOpenaiAPIKey());
6 dbms_vector. create_credential(
7 credential_name => "NIALL_OPENAI_CRED',
8 params => json(jo.to_string));
9 end;
10 /
PL/SQL procedure successfully completed. (i
il 2
long acre

44

Embeddings 2 — utl_to_embedding function

* Use the dbms_vector.utl_to_embedding function to embed and
return a vector

DBMS VECTOR.UTL TO EMBEDDING
(DATA IN CILOB,
PARAMS IN JSON default NULL)
return VECTOR

”

long acre

45

Embeddings 2 — utl_to_embedding function
parameters example

{
"provider": "openai',
"credential name": "NIALL OPENAI CRED",
"url": "https://api.openai.com/vl/embeddings",
"model": "text-embedding-3-large"
}
long acre
46
Embeddings 2 — utl_to_embedding function
usage example
declare

v_vector vector;

begin
v_vector := dbms_vector.utl to_embedding
(data => 'Buongiorno Italia!’,

params => json (embeddings.getOpenaiAPIEmbeddingParams()))

dbms_output.put line (embeddings.serializeMyVector (v_vector))
end;

, ”

long acre

47

Embeddings 2 — utl_to_embedding function
usage example

SQL> declare
2 v_vector vector;
begin
v_vector := dbms_vector.utl_to_embedding
(data => 'Buongiorno Italia!’,
params => json(embeddings.getOpenaiAPIEmbeddingParams()));

end;
/

3
4
5
6
7
8 dbms_output.put_line(embeddings.serializeMyVector(v_vector));
9
10
-2.33546775E-002,3.92329413E-003,-2.01128423E-002,1.43358689E-002, -.

L

PL/SQL procedure successfully completed. Mm m&

long acre

48

“Chunking” - splitting your input into smaller
pieces

Models usually have a limit for how many tokens they can vectorise at a
time. So we often have to breakup a text or a document into “chunks”
before vectorising it.

This process is called “chunking”

”

long acre

49

Chunking with DBMS_VECTOR utl_to_chunks

We can use the Utl_to_chunks function which returns an array of vectors
along with some metadata in JSON format

DBMS_VECTOR.UTL_TO_CHUNKS
(DATA IN CLOB (or VARCHAR2)
PARAMS IN JSON default NULL)
return VECTOR_ARRAY T;

n

long acre

51

Chunking with DBMS_VECTOR utl_to_chunks

Parameters example:

{"by":"words",
"max":"100",
"overlap":"0",
"split":"recursively",
"normalize":"all" }

”

long acre

52

Chunking with DBMS_VECTOR utl_to_chunks

select t.text _key doc,
json_value (c.column_value, '$.chunk_id' returning number) as id,
json_value (c.column_value, '$.chunk_offset' returning number) as offset,
json_value (c.column_value, '$.chunk_1ength' returning number) as len,
json_value (c.column_value, '$.chunk_data') as text
from texts_for chunking t,
dbms_vector.utl_to_chunks
(t.text,
json('{ "by":"words",
"max":"100",
"overlap":"0",
"split":"recursively", (o
"normalize":"all" }')) c; MM&

long acre

Chunking with DBMS_VECTOR utl_to_chunks

select t.text_key doc,
json_value(c.column_value, '$.chunk_id' returning number) as id,
json_value(c.column_value, '$.chunk_offset' returning number) as offset,
json_value(c.column_value, '$.chunk_length' returning number) as len,
json_value(c.column_value, '$.chunk_data') as text
from texts_for_chunking t,
dbms_vector.utl_to_chunks
(t.text,
json('{

"normalize":"all" }')) c;

:ry Result *

@ E& SQL | All Rows Fetched: 17 in 0,495 seconds

4 poc [% D] OFFSET[% LEN[# TEXT i
BEEROVIAN-EMPIRE 1 1 511The history of the Beerovian Empire is a tale M&
BEEROVIAN-EMPIRE 2 512 468The earliest records of the Beerovian people c

BEEROVIAN-EMPIRE 3 980 455The unification of these tribes began under tt long acre

Embedding the chunks with DBMS_VECTOR

Uses utl_to_embeddingS which accepts the output from
utl_to_chunks as a parameter

select t.¥*,
et.column value as vector_ value
from texts_for chunking t,
dbms vector.utl to_embeddings
(dbms_vector.utl_to_chunks

(t.text,
json('{"by": "words", "max": 100}')),
json (embeddings.getOpenaiAPIEmbeddingParams())) et;

long acre

55

Al Vector Search — beyond the basics
Importing pre-trained models

Import pre-trained embedding ML models for vector generation
within the DB

* Open Neural Network Exchange (ONNX) is an open format built to
represent machine learning models

« https://onnx.ai/

”

long acre

56

Al Vector Search — beyond the basics

Vector Indexes and Approximate Similarity

Vector Indexes and approximate similarity

Vector indexes are a class of specialized indexing data structures designed to accelerate

similarity searches using high-dimensional vectors.

They use techniques such as clustering, partitioning, and neighbour graphs to group vectors
representing similar items, which drastically reduces the search space, thereby making the

search process quite efficient.

long acre

58

v

,‘{‘ 6

/ 4

: -3
ROGER, ROGER:)
. VECTORVI

59

questions?

60

